Per the Federal Facility Agreement for Iowa Army Ammunition Plant, Article X.B.1, the attached document is the final version of the submitted document.

VOLUME 1 OF 2

DRAFT FINAL

2002 GROUNDWATER MONITORING REPORT

IOWA ARMY AMMUNITION PLANT MIDDLETOWN, IOWA

Prepared for U.S. Army Corps of Engineers — Omaha District Omaha, Nebraska

August 2003

HydroGeoLogic, Inc. 8595 College Boulevard Building H, Suite 110 Overland Park, KS 66210-2617 (913) 317-8860

PCDR \ PCDR3 \ IOWA AAP \ 062708 \ IWA080212

DRAFT

2002 GROUNDWATER MONITORING REPORT IOWA ARMY AMMUNITION PLANT, MIDDLETOWN, IOWA

Prepared for

U.S. Army Corps of Engineers Omaha District

Contract No. DACA41-02-D-0004 Delivery Order No. DK02

March 2003

DRAFT

2002 GROUNDWATER MONITORING REPORT IOWA ARMY AMMUNITION PLANT MIDDLETOWN, IOWA

Prepared for

U.S. Army Corps of Engineers Omaha District

Prepared by

HydroGeoLogic, Inc. 8595 College Boulevard, Suite 110 Overland Park, KS 66210

March 2003

1

`₩.⊳ . .

ч.

1.0	INTR	ODUCTION1-1
	1.1	PROJECT AUTHORITY1-1
	1.2	GROUNDWATER MONITORING PURPOSE AND SCOPE1-1
	1.3	FACILITY DESCRIPTION1-2
	1.4	PREVIOUS INVESTIGATIONS1-3
	1.5	ENVIRONMENTAL SETTING1-3
		1.5.1 Geology1-3
		1.5.2 Hydrogeology1-4
		1.5.3 Surface Water
	1.6	TRANSFER OF SITES FROM ER,A TO FUSRAP
	1.7	GROUNDWATER MONITORING REPORT ORGANIZATION
	1.7	OROUND WATER MONTORING REFORT OROANIZATION
2.0	FIELI	D ACTIVITIES
	2.1	GROUNDWATER LEVEL MEASUREMENT ROUNDS2-1
	2.2	WELL PURGING AND MEASUREMENT OF WATER QUALITY
	2.2	PARAMETERS
	2.3	SPRING 2002 GROUNDWATER SAMPLING AT MONITORING
	2.5	WELLS
	2.4	SPRING 2002 SURFACE WATER SAMPLING
	2.4	WATER SOURCE SAMPLING
	2.5	RINSATE SAMPLING
	2.0	IDW DISPOSAL
	2.7	IDw DISPOSAL
3.0	HYDI	ROGEOLOGIC RESULTS
	3.1	SPRING 2002 GROUNDWATER LEVELS
	3.2	GROUNDWATER OCCURRENCE AND HYDRAULIC GRADIENTS3-1
		3.2.1 Shallow Groundwater/Water Table – Shallow Glacial Till
		3.2.2 Intermediate Groundwater – Intermediate Glacial Till
		3.2.3 Deep Groundwater – Basal Till/Upper Bedrock
4.0	CHEN	AICAL INVESTIGATION RESULTS
	4.1	SUMMARY OF ANALYTICAL RESULTS4-1
		4.1.1 Volatile Organic Compounds Detected in Groundwater4-1
		4.1.2 Semivolatile Organic Compounds Detected in Groundwater4-1
		4.1.3 Explosive Compounds Detected in Groundwater
		4.1.4 Metals Detected in Groundwater Samples
	4.2	DATA QUALITY REVIEW/VALIDATION PROCESS
		4.2.1 Laboratory Data Reduction and Validation
		4.2.2 HydroGeoLogic Data Review
		4.2.3 HydroGeoLogic Data Review
		4-3 IIyuluuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
	4.3	HYDROGEOLOGIC REVIEW/VALIDATION RESULTS4-3

Page

2

1.0000 Marine 7

		4.3.1 Laboratory Sample Delivery Groups
		4.3.1.1 Data Package Completeness
		4.3.1.2 Laboratory Case Narrative4-4
		4.3.1.3 Holding Times and Sample Preservation
		4.3.1.4 Blank Samples
		4.3.1.5 Surrogate Compound Percent Recoveries
		4.3.1.6 Laboratory Control Samples
		4.3.1.7 Field Duplicate Analysis 4-13
		4.3.1.8 Quality Assurance Analysis
		4.3.1.9 Matrix Spike/Matrix Spike Duplicate Analysis
		4.3.1.10 PARCC Parameters
	4.4	FIELD WATER QUALITY PARAMETERS
5.0	NATU	RE AND EXTENT OF CONTAMINATION5-1
	5.1	LINE 1 AND LINE 1 IMPOUNDMENT
		5.1.1 Shallow Groundwater/Water Table – Shallow Glacial Till
		5.1.2 Intermediate Groundwater – Intermediate Glacial Till
		5.1.3 Deep Groundwater – Upper Bedrock and/or Glacial Outwash5-2
	5.2	LINE 2
		5.2.1 Shallow Groundwater/Water Table – Shallow Glacial Till
		5.2.2 Intermediate Groundwater – Intermediate Glacial Till
		5.2.3 Deep Groundwater – Upper Bedrock5-3
	5.3	LINE 3
		5.3.1 Shallow Groundwater/Water Table – Shallow Glacial Till
		5.3.2 Intermediate Groundwater – Intermediate Glacial Till
		5.3.3 Deep Groundwater – Upper Bedrock
	5.4	LINE 3A, LINE 3A POND, AND LINE 3A STP
		5.4.1 Shallow Groundwater/Water Table – Shallow Glacial Till
		 5.4.2 Intermediate Groundwater – Intermediate Glacial Till
	5.5	LINE 4A AND 4B
	5.5	5.5.1 Shallow Groundwater/Water Table – Shallow Glacial Till Unit
		5.5.2 Intermediate Groundwater – Intermediate Glacial Till
		5.5.3 Deep Groundwater – Basal Till and/or Upper Bedrock
	5.6	LINE 5A AND 5B
	210	5.6.1 Shallow Groundwater/Water Table – Shallow Glacial Till
		5.6.2 Intermediate Groundwater – Intermediate Glacial Till
		5.6.3 Deep Groundwater – Basal Till and/or Upper Bedrock
	5.7	LINE 9
		5.7.1 Shallow Groundwater/Water Table – Shallow Glacial Till
		5.7.2 Intermediate Groundwater – Intermediate Glacial Till
		5.7.3 Deep Groundwater – Basal Till and/or Upper Bedrock
		1 11

ii

4

o for

6

5.8	LINE 800/PINK WATER LAGOON	5-6
	5.8.1 Shallow Groundwater/Water Table – Shallow Glacial Till	5-6
	5.8.2 Intermediate Groundwater – Intermediate Glacial Till	5-7
	5.8.3 Deep Groundwater – Bedrock and/or Upper Bedrock	5-7
5.9	EAST BURN PADS	5-7
	5.9.1 Shallow Groundwater/Water Table – Shallow Glacial Till	5-7
	5.9.2 Intermediate Groundwater – Intermediate Glacial Till	5-8
	5.9.3 Deep Groundwater – Basal Till and/or Upper Bedrock	5-8
5.10	PESTICIDE PIT	5-8
	5.10.1 Shallow Groundwater/Water Table – Shallow Glacial Till	5-8
	5.10.2 Intermediate Groundwater – Intermediate Glacial Till	5-9
	5.10.3 Deep Groundwater - Basal Till and/or Upper Bedrock	5-9
5.11	INERT DISPOSAL AREA	5-9
	5.11.1 Shallow Groundwater/Water Table – Shallow Glacial Till	5-9
	5.11.2 Intermediate Groundwater – Intermediate Glacial Till	5-10
	5.11.3 Deep Groundwater - Basal Till and/or Upper Bedrock	5-10
5.12	DEMOLITION AREA AND DEACTIVATION FURNACE	5-11
	5.12.1 Shallow Groundwater/Water Table – Shallow Glacial Till	5-11
	5.12.2 Intermediate Groundwater – Intermediate Glacial Till	5-11
	5.12.3 Deep Groundwater – Upper Bedrock	5-11
5.13	FIRING SITE	
	5.13.1 Shallow Groundwater/Water Table – Shallow Glacial Till	5-11
	5.13.2 Intermediate Groundwater – Intermediate Glacial Till	5-11
	5.13.3 Deep Groundwater - Basal Till and/or Upper Bedrock	5-11
5.14	AMMUNITION BOX CHIPPER NATURE AND EXTENT OF	
	CONTAMINATION	
	5.14.1 Shallow Groundwater/Water Table – Shallow Glacial Till	5-12
	5.14.2 Intermediate Groundwater – Intermediate Glacial Till	
	5.14.3 Deep Groundwater – Basal Till and/or Upper Bedrock	
5.15	WEST BURN PADS, WEST BURN PADS LANDFILL, BURN CAG	
	AND BURN CAGES LANDFILL	
	5.15.1 Shallow Groundwater/Water Table – Shallow Glacial Till	
	5.15.2 Intermediate Groundwater – Intermediate Glacial Till	
	5.15.3 Deep Groundwater – Bedrock and/or Upper Bedrock	5-13
5.16	NORTH BURN PADS, NORTH BURN PADS LANDFILL, AND	
	CONTAMINATED WASTE PROCESSOR	
	5.16.1 Shallow Groundwater/Water Table – Shallow Glacial Till	
	5.16.2 Intermediate Groundwater – Intermediate Glacial Till	
	5.16.3 Deep Groundwater – Basal Till and/or Upper Bedrock	
5.17	FIRE TRAINING AREA	
	5.17.1 Shallow Groundwater/Water Table – Shallow Glacial Till	
	5.17.2 Intermediate Groundwater - Intermediate Glacial Till	5-15

Ne ..

PAGE	

		5.17.3 Deep Groundwater – Upper Bedrock	j
	5.18	PLANT BOUNDARY AND GENERAL AREA	5
		5.18.1 Shallow Groundwater/Water Table – Shallow Glacial Till	5
		5.18.2 Intermediate Groundwater – Intermediate Glacial Till	5
		5.18.3 Deep Groundwater - Basal Till and/or Upper Bedrock	5
	5.19	SURFACE WATER	1
		5.19.1 Long Creek	1
		5.19.2 Brush Creek	7
		5.19.3 Brush Creek Tributaries and Line 800/Pink Water Lagoon 5-18	3
		5.19.4 Spring Creek and Spring Creek Tributaries	3
6.0	PERC	CHLORATE SAMPLING6-1	l
	6.1	SAMPLE LOCATIONS	Ĺ
	6.2	ANALYTICAL RESULTS6-1	l
7.0	NATU	URAL ATTENUATION PARAMETER RESULTS	l
	7.1	NATURAL ATTENUATION DATA EVALUATION METHODOLOGY7-1	L
	7.2	NATURAL ATTENUATION WATER QUALITY PARAMETER	
		RESULTS	l
		7.2.1 General Facility-Wide Data Trends7-2	2
		7.2.2 Site-Specific Data Trends7-2	
	7.3	DEGRADATION PROCESSES IDENTIFICATION	2
	7.4	NATURAL ATTENUATION DATA SCREENING SUMMARY7-3	3
8.0	RECO	OMMENDED MONITORING WELL MAINTENANCE	L
	8.1	Maintenance Issues	Ł
	8.2	Maintenance Recommendations	Ĺ
	8.3	Photographic Documentation	3
9.0	REFE	RENCES	l

APPENDICES

Appendix A	Groundwater Sampling Field Documentation Sample Collection Field Sheets – Spring 2002 Daily Quality Control Reports – Spring 2002
Appendix B	Summary of Analytical Results Spring 2002
Appendix C	Off-site Groundwater Monitoring Fall 2002
Appendix D	Trench 5 – Inert Landfill Data Summary Spring 2002 and Fall 2002
Appendix E	CAMU Trench 7 Report Quarterly Monitoring May 2002, August 2002, and November 2002

8

• • • • • • • • • • • • • • •

.

v

LIST OF TABLES

Table 1.1	Iowa Army Ammunition Plant Sites
Table 2.1	Summary of Samples Collected, Spring 2002 Groundwater Monitoring Event
Table 3.1	Water Level Measurements, Spring 2002 Groundwater Monitoring Event
Table 3.2	Summary of Groundwater Depths and Hydraulic Gradients, Spring 2002
	Groundwater Monitoring Event
Table 4.1	Summary of Chemicals Detected at Line 1 and Line 1 Impoundment, Spring
	2002 Groundwater Monitoring Event
Table 4.2	Summary of Chemicals Detected at Line 2, Spring 2002 Groundwater
	Monitoring Event
Table 4.3	Summary of Chemicals Detected at Line 3, Spring 2002 Groundwater
	Monitoring Event
Table 4.4	Summary of Chemicals Detected at Line 3A, Line 3A Pond, and Line 3A STP,
	Spring 2002 Groundwater Monitoring Event
Table 4.5	Summary of Chemicals Detected at Line 4A and 4B, Spring 2002 Groundwater
	Monitoring Event
Table 4.6	Summary of Chemicals Detected at Line 5A and 5B, Spring 2002 Groundwater
	Monitoring Event
Table 4.7	Summary of Chemicals Detected at Line 9, Spring 2002 Groundwater
	Monitoring Event
Table 4.8	Summary of Chemicals Detected at Line 800 / Pink Water Lagoon, Spring 2002
	Groundwater Monitoring Event
Table 4.9	Summary of Chemicals Detected at East Burn Pads, Spring 2002 Groundwater
	Monitoring Event
Table 4.10	Summary of Chemicals Detected at Pesticide Pit, Spring 2002 Groundwater
	Monitoring Event
Table 4.11	Summary of Chemicals Detected at Inert Disposal Area, Spring 2002
T.1. (10	Groundwater Monitoring Event
Table 4.12	Summary of Chemicals Detected at Demolition Area and Deactivation Furnace,
Table 4.13	Spring 2002 Groundwater Monitoring Event
1 able 4.15	Summary of Chemicals Detected at Firing Site, Spring 2002 Groundwater Monitoring Event
Table 4.14	Summary of Chemicals Detected at Ammunition Box Chipper Disposal Pit,
1 abic 4.14	Spring 2002 Groundwater Monitoring Event
Table 4.15	Summary of Chemicals Detected at West Burn Pads, West Burn Pads Landfill,
14010 4.15	Burn Cages, and Burn Cages Landfill, Spring 2002 Groundwater Monitoring
	Event
Table 4.16	Summary of Chemicals Detected at North Burn Pads, North Burn Pads Landfill,
14010	and Contaminated Waste Processor, Spring 2002 Groundwater Monitoring
	Event
Table 4.17	Summary of Chemicals Detected at Fire Training Area, Spring 2002
	Groundwater Monitoring Event

N₁₂.

LIST OF TABLES

- Table 4.18Summary of Chemicals Detected at Plant Boundary and General Area, Spring
2002 Groundwater Monitoring Event
- Table 4.19Summary of Chemicals Detected in Surface Water at Long Creek, Spring 2002
Groundwater Monitoring Event
- Table 4.20Summary of Chemicals Detected in Surface Water at Brush Creek, Spring 2002
Groundwater Monitoring Event
- Table 4.21Summary of Chemicals Detected in Surface Water at Brush Creek Tributaries,
Spring 2002 Groundwater Monitoring Event
- Table 4.22Summary of Chemicals Detected in Surface Water at Spring Creek, Spring 2002
Groundwater Monitoring Event
- Table 4.23Summary of Chemicals Detected in Surface Water at Spring Creek Tributaries,
Spring 2002 Groundwater Monitoring Event
- Table 4.24Qualifications Based on Outlying Holding Times and Sample Preservation,
Spring 2002 Groundwater Sampling Event
- Table 4.25Qualifications Based on Blank Contamination, Spring 2002GroundwaterSampling Event
- Table 4.26Qualifications Based on Outlying LCS Recoveries, Spring 2002 Groundwater
Sampling Event
- Table 4.27Summary of Analytical Results for Duplicate Sample Pairs and Quality
Assurance Sample Pairs, Spring 2002 Groundwater Sampling Event
- Table 4.28MS/MSD Samples Outside Evaluation Criteria, Spring 2002 Groundwater
Sampling Event
- Table 4.29Qualifications based on Column Difference Spring 2002 Groundwater Sampling
Event
- Table 4.30Summary of Field Water Quality Parameters, Spring 2002 Groundwater
Monitoring Event
- Table 5.1Summary of PRGs for Select Chemicals, Spring 2002 Groundwater Monitoring
Event
- Table 7.1
 Summary of Natural Attenuation Parameter Laboratory Results
- Table 7.2
 Summary of Natural Attenuation Parameter Field Results
- Table 7.3
 Summary of Initial Natural Attenuation Data Screening
- Table 8.1
 Summary of Well Maintenance Issues

1

 $m_{i,k}$

×.....

Figure 1.1	Facility Location Map
Figure 1.2	Facility Map
Figure 2.1	Well Location Map
Figure 3.1a	Groundwater Elevations - Spring 2002, Shallow Till Wells, Line 1 and Line 1 Impoundment
Figure 3.1b	Groundwater Elevations - Spring 2002, Intermediate Till Wells, Line 1 and Line 1 Impoundment
Figure 3.1c	Groundwater Elevations - Spring 2002, Upper Bedrock Wells, Line 1 and Line 1 Impoundment
Figure 3.2a	Groundwater Elevations - Spring 2002, Shallow Till Wells, Line 2
Figure 3.2b	Groundwater Elevations - Spring 2002, Intermediate Till Wells, Line 2
Figure 3.3	Groundwater Elevations - Spring 2002, Shallow Till Wells, Line 3
Figure 3.4a	Groundwater Elevations - Spring 2002, Shallow Till Wells, Line 3A, Line 3A Pond, and Line 3A STP
Figure 3.4b	Groundwater Elevations - Spring 2002, Glacial Outwash/Upper Bedrock Wells, Line 3A, Line 3A Pond, and Line 3A STP
Figure 3.5	Groundwater Elevations - Spring 2002, Shallow Till Wells, Line 4A and 4B
Figure 3.6	Groundwater Elevations - Spring 2002, Shallow Till Wells, Line 5A and 5B
Figure 3.7	Groundwater Elevations - Spring 2002, Shallow Till Wells, Line 9
Figure 3.8a	Groundwater Elevations - Spring 2002, Shallow Till Wells, Line 800/Pink Water Lagoon
Figure 3.8b	Groundwater Elevations - Spring 2002, Intermediate Till Wells, Line 800/Pink Water Lagoon
Figure 3.8c	Groundwater Elevations - Spring 2002, Upper Bedrock and Bedrock Wells, Line 800/Pink Water Lagoon
Figure 3.9a	Groundwater Elevations - Spring 2002, Shallow Till Wells, East Burn Pads
Figure 3.9b	Groundwater Elevations - Spring 2002, Basal Till, Upper Bedrock, and Bedrock Wells, East Burn Pads
Figure 3.10	Groundwater Elevations - Spring 2002, Shallow Till Wells, Pesticide Pit
Figure 3.11a	Groundwater Elevations - Spring 2002, Shallow Till Wells, Inert Disposal Area
Figure 3.11b	Groundwater Elevations - Spring 2002, Intermediate Till Wells, Inert Disposal Area
Figure 3.11c	Groundwater Elevations - Spring 2002, Upper Bedrock and Bedrock Wells, Inert Disposal Area
Figure 3.12	Groundwater Elevations - Spring 2002, Upper Bedrock Wells, Demolition Area and Deactivation Furnace
Figure 3.13	Groundwater Elevations - Spring 2002, Shallow Till Wells, Flyash Landfill, Flyash Disposal Area
Figure 3.14a	Groundwater Elevations - Spring 2002, Shallow Till Wells, Firing Site Wells, Firing Site
Figure 3.14b	Groundwater Elevations - Spring 2002, Glacial Outwash and Upper Bedrock Wells, Firing Site

LIST OF FIGURES

- Figure 3.15 Groundwater Elevations - Spring 2002, Shallow Till Wells, Ammunition Box Chipper Disposal Pit Figure 3.16a Groundwater Elevations - Spring 2002, Shallow Till Wells, West Burn Pads, West Burn Pads Landfill, Burn Cages, and Burn Cages Landfill Figure 3.16b Groundwater Elevations - Spring 2002, Upper Bedrock and Bedrock Wells, West Burn Pads, West Burn Pads Landfill, Burn Cages, and Burn Cages Landfill Figure 3.17a Groundwater Elevations - Spring 2002, Shallow Till Wells, North Burn Pads, North Burn Pads Landfill, and Contaminated Waste Processor Figure 3.17b Groundwater Elevations - Spring 2002, Upper Bedrock Wells, North Burn Pads, North Burn Pads Landfill, and Contaminated Waste Processor Figure 3.18a Groundwater Elevations - Spring 2002, Shallow Till Wells, Fire Training Area Figure 3.18b Groundwater Elevations - Spring 2002, Upper Bedrock Wells, Fire Training Area Chemicals Exceeding PRGs, Shallow Till Wells, Line 1 and Line 1 Figure 5.1 Impoundments Figure 5.2 Chemicals Exceeding PRGs, Shallow Till Wells, Line 2 Figure 5.3 Chemicals Exceeding PRGs, Shallow Till Wells, Line 3 Figure 5.4 Chemicals Exceeding PRGs, Shallow Till Wells, Line 3A, Line 3A Pond, and Line 3A STP Chemicals Exceeding PRGs, Shallow Till Wells, Line 4A and 4B Figure 5.5 Figure 5.6 Chemicals Exceeding PRGs, Shallow Till Wells, Line 5A and 5B Figure 5.7 Chemicals Exceeding PRGs, Shallow Till Wells, Line 9 Figure 5.8a Chemicals Exceeding PRGs, Shallow Till Wells, Line 800/Pink Water Lagoon Figure 5.8b Chemicals Exceeding PRGs, Intermediate Till Wells, Line 800/Pink Water Lagoon Figure 5.8c Chemicals Exceeding PRGs, Upper Bedrock and Bedrock Wells, Line 800/Pink Water Lagoon Figure 5.8d Chemicals Exceeding PRGs, Total Explosives Concentrations, Along Geologic Cross-Section A-A', Line 800/Pink Water Lagoon Chemicals Exceeding PRGs, Total Explosives Concentrations, Along Geologic Figure 5.8e Cross-Section B-B', Line 800/Pink Water Lagoon Chemicals Exceeding PRGs, Shallow Till Wells, East Burn Pads Figure 5.9a Figure 5.9b Chemicals Exceeding PRGs, Basal Till, Upper Bedrock, and Bedrock Wells, East Burn Pads Figure 5.10 Chemicals Exceeding PRGs, Shallow Till Wells, Pesticide Pit Figure 5.11 Chemicals Exceeding PRGs, Shallow and Intermediate Till Wells, Inert **Disposal** Area Figure 5.12 Chemicals Exceeding PRGs, Demolition Area and Deactivation Furnace Figure 5.13 Chemicals Exceeding PRGs, Firing Site Figure 5.14 Chemicals Exceeding PRGs, Ammunition Box Chipper Disposal Pit

LIST OF FIGURES

- Figure 5.15a Chemicals Exceeding PRGs, RDX in Shallow Till Wells, West Burn Pads, West Burn Pads Landfill, Burn Cages, and Burn Cages Landfill
- Figure 5.15b Chemicals Exceeding PRGs, Total VOCs in Shallow Till Wells, West Burn Pads, West Burn Pads Landfill, Burn Cages, and Burn Cages Landfill
- Figure 5.15c Chemicals Exceeding PRGs, RDX in Upper Bedrock and Bedrock Wells, West Burn Pads, West Burn Pads Landfill, Burn Cages, and Burn Cages Landfill
- Figure 5.15d Chemicals Exceeding PRGs, Freon 113 in Upper Bedrock and Bedrock Wells, West Burn Pads, West Burn Pads Landfill, Burn Cages, and Burn Cages Landfill
- Figure 5.16a Chemicals Exceeding PRGs, RDX in Shallow Till Wells North Burn Pads, North Burn Pads Landfill, and Contaminated Waste Processor
- Figure 5.16b Chemicals Exceeding PRGs, RDX in Upper Bedrock Wells North Burn Pads, North Burn Pads Landfill, and Contaminated Waste Processor
- Figure 5.17a Chemicals Exceeding PRGs, RDX in Shallow Till Wells, Fire Training Area
- Figure 5.17b Chemicals Exceeding PRGs, Total VOCs in Shallow Till Wells, Fire Training Area
- Figure 5.17c Chemicals Exceeding PRGs, Total VOCs in Upper Bedrock Wells, Fire Training Area
- Figure 5.18 Chemicals Exceeding PRGs, Plant Boundary and General Area
- Figure 5.19 Chemicals Exceeding PRGs, Surface Water Sample Locations, Iowa Army Ammunition Plant
- Figure 5.20 Chemicals Exceeding PRGs, Surface Water Sample Locations, Brush Creek Tributary and Line 800
- Figure 5.21 Chemicals Exceeding PRGs, Surface Water Sample Locations, Spring Creek and Spring Creek Tributary

LIST OF ACRONYMS AND ABBREVIATIONS

 $\mathbf{v}_{\mathbf{s}}$

ча. . .

1,1,1-TCA	1,1,1-trichloroethane
1,1,2-TCA	1,1,2-trichloroethane
1,1-DCA	1,1-dichloroethane
1,1-DCE	1,1-dichloroethene
1,2-DCA	1,2-dichloroethane
1,3,5-TNB	1,3,5-trinitrobenzene
1,3-DNB	1,3-dinitrobenzene
2,4,6-TNT	2,4,6-trinitrotoluene
2,4-DNT	2,4-dinitrotoluene
2,6-DNT	2,6-dinitrotoluene
2-Am-DNT	2-amino-4,6-dinitrotoluene
4-Am-DNT	4-amino-2,6-dinitrotoluene
AO	American Ordnance
bgs	below ground surface
°C	degrees Celsius
CAMU	Corrective Action Management Unit
CCB	continuing calibration blank
CCC	calibration check compound
CCV	continuing calibration verification
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
cis-1,2-DCE	cis-1,2-dichloroethene
CLP	Contract Laboratory Program
COC	chain-of-custody
% D	percent difference
DERP	Defense Environmental Restoration Program
DI	deionized
DO	dissolved oxygen
DoD	Department of Defense
E & E	Ecology and Environment, Inc.
EPA	U.S. Environmental Protection Agency
ER,A	Environmental Restoration, Army
eV	electron volt
°F	degrees Fahrenheit
FS	Feasibility Study
Freon 12	dichlorodifluoromethane

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

·····

Freon 113	1,1,2-trichloro-1,2,2-trifluoroethane
FUSRAP	Formerly Utilized Sites Remedial Action Program
GAC	granular activated carbon
GOCO	government-owned, contractor-operated
GPS	Global Positioning System
HALs	Health Advisory Levels
HGL	HydroGeoLogic, Inc.
HMX	cyclotetramethylenetetranitramine
HSWA	Hazardous and Solid Waste Amendments
HRS	Hazard Ranking System
IAAAP	Iowa Army Ammunition Plant
IAG	Interagency Agreement
ICV	initial calibration verification
IDA	Inert Disposal Area
IDW	investigation derived waste
IGS	Iowa Geologic Survey
LCS	laboratory control sample
LLNL	Lawrence Livermore National Laboratory
LTM	long-term monitoring
MCL	Maximum Contaminant Level
MHC	Mason and Hanger Corporation
μg/L	Micrograms per Liter
MIBK	methyl isobutyl ketone
MNX	hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine
MS/MSD	matrix spike/matrix spike duplicate
MSL	mean sea level
mV	millivolts
NPDES	National Pollutant Discharge Elimination System
NPL	National Priorities List
ORP	oxidation reduction potential
OSWER	Office of Solid Waste and Emergency Response
OUs	Operable Units
PA	Preliminary Assessment
PAH	polynuclear aromatic hydrocarbon
PCB	polychlorinated biphenyl

U.S. Army Corps of Engineers—Omaha District

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

pCi/L	picoCuries per liter
PCE	tetrachloroethene
PID	Photoionization detector
PRGs	Preliminary Remediation Goals
ppb	part per billion
PP	Proposed Plan
PPE	personal protective equipment
PQL	practical quantitation limit
QAPP	Quality Control Project Plan
QA/QC	Quality Assurance/Quality Control
RA	Risk Assessment
RCRA	Resource Conservation and Recovery Act
RD/RA	Remedial Design/Remedial Action
RDX	cyclotrimethylenetrinitramine
RI	Remedial Investigation
RLs	Risk Levels
ROD	Record of Decision
RPD	relative percent difference
RSD	relative standard deviation
SI	Site Investigation
SDGs	sample delivery groups
SOPs	standard operating procedures
SPCC	system performance check compound
SVOCs	semivolatile organic compounds
TCE	trichloroethylene
TKN	total Kjeldahl nitrogen
TOC	top of casing or total organic carbon
ТОХ	total organic halides
UCL	upper control limit
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
UST	underground storage tank
VOCs	volatile organic compounds

1

xiii

DRAFT FINAL

2002 GROUNDWATER MONITORING REPORT IOWA ARMY AMMUNITION PLANT MIDDLETOWN, IOWA

Prepared for

U.S. Army Corps of Engineers Omaha District

Prepared by

HydroGeoLogic, Inc. 8595 College Boulevard, Suite 110 Overland Park, KS 66210

August 2003

Executive Summary

This document presents the results of the 2002 groundwater monitoring events at the Iowa Army Ammunition Plant (Iowa AAP), in Middletown, Iowa. Work for this assignment was completed for the U.S. Army Corps of Engineers (USACE) – Omaha District in accordance with the requirements of Delivery Order No. DK02 of Contract No. DACA41-02-D-0004. The primary purpose of groundwater monitoring at Iowa AAP is to monitor releases of contaminants into groundwater and surface water, identify potential migration pathways, monitor remedial actions, and identify potential natural attenuation (NA) processes that may be occurring in groundwater.

Iowa AAP is a government-owned, contractor-operated (GOCO) facility. The current operating contractor is American Ordnance (AO), under the command of the U.S. Army Joint Munitions Command. Production of munitions began in 1941 and the facility remains in operation. Iowa AAP occupies 19,015 acres in the town of Middletown in Des Moines County, Iowa, and is bordered by U.S. Highway 34 to the north, upland agricultural farms to the east and west, and the Skunk River Valley to the south. Surface topography is characterized by flat to gently rolling uplands dissected by entrenched streams and rivers. Approximately one-third of the Iowa AAP property is occupied by active or formerly active production or storage facilities. The remaining land at Iowa AAP is either woodlands or is leased for agricultural usage. Monitoring wells at Iowa AAP are completed into one of the following three zones: shallow till, intermediate till, basal till/glacial outwash/bedrock.

During the 2002 groundwater monitoring events, samples were collected at 21 sites at Iowa AAP. This effort included collection of groundwater samples at 190 selected monitoring wells, and collection of surface water samples at 22 locations. In addition, water levels were obtained from 274 selected monitoring well and piezometer locations to evaluate groundwater flow at each site. Laboratory analyses were selected on a site-by-site basis, but generally included one or more of the following analytical suites: explosives, metals, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), uranium, and radionuclides. At selected sites, groundwater samples also were analyzed for natural attenuation parameters.

A comparison of the 2001 and 2002 water level data shows that water levels have declined at the majority of the sites. Generally, the decreases were less than 2 feet. Groundwater flow directions interpreted from the 2002 water level data are similar to those observed in 2001.

Based on interpretation of the 2002 analytical data, several observations were noted. In general, explosive contaminant concentrations were similar to those detected during previous monitoring events. The extent of the RDX plumes at Line 1 and Line 1 Impoundment; Line 2; Line 3; Line 5A/5B; Line 800/Pink Water Lagoon; East Burn Pads, Demolition Area and Deactivation Furnace; West Burn Pads area; and North Burn Pads area generally remained consistent with those observed during 2001. At Line 800/Pink Water Lagoon, the most

heavily explosives-contaminated site, bedrock monitoring wells continue to be nondetect for explosives analytes. Changes in explosives concentrations were observed at selected well locations. RDX was detected at a concentration in exceedence of a PRG in one bedrock well (JAW-18) at Line 3A. Previous RDX concentrations in this well were below the 2 μ g/L Health Advisory Level (HAL). In addition, RDX was detected above the PRG in North Burn Pads well JAW-626 where historical RDX concentrations have been below the PRG. At Inert Disposal Area (IDA) well ET-3, explosives were detected at concentrations in exceedence of their PRGs during the Spring 2002 semiannual sampling event; however, none were detected during Fall 2002. It should be noted that a report specific to the RCRA Trench 5 monitoring has been submitted under separate cover.

At Line 9, Freon 113 concentrations remained similar to those detected during 2001. In general, VOC contaminants were detected in wells at the West Burn Pads, Fire Training Area (FTA), and the IDA at concentrations similar to those observed during previous sampling events. The only SVOC detected at a significantly elevated level was pentachlorophenol in IDA well ET-3, which was observed at historically similar levels.

Because the arsenic Maximum Contaminant Level (MCL) was lowered from 50 μ g/L to 10 μ g/L, this analyte was detected at concentrations above the MCL in one or more wells at several sites. These sites include Line 2, IDA, Plant Boundary and General Area, FTA, and the West Burn Pads area.

Select wells were sampled for perchlorate in Spring 2002. The only perchlorate detection was observed in Line 800/Pink Water Lagoon well 800-MW-18. However, perchlorate was nondetect in this well during the November 2000 sampling for this analyte. It appears that further perchlorate sampling is not warranted at the East Burn Pads, IDA, and the North Burn Pads area.

Evaluation of the natural attenuation parameter results did not yield significantly different conclusions from previous monitoring events. Generally, the data compiled to date has not yielded significant conclusions regarding natural attenuation activity at Iowa AAP. Two significant trends remain evident from previous sampling events: dissolved oxygen and Redox potentials continue to decline.

During Spring 2002, RDX concentrations detected in Brush Creek at four locations adjacent to and downstream of Lines 2 and 3 were three to five times 2001 levels. The cause of this RDX increase is currently unknown. However, rainfall totals during the four days prior to the 2002 event were nearly five times that recorded during the same time period prior to the Spring 2001 sampling event. The Army is planning to implement a comprehensive investigation of the Brush Creek watershed to determine the potential source(s) of the RDX contamination in Brush Creek, and the reasons for RDX concentration fluctuations in the surface water. Section 1

4

DRAFT FINAL 2002 GROUNDWATER MONITORING REPORT IOWA ARMY AMMUNITION PLANT, MIDDLETOWN, IOWA

1.0 INTRODUCTION

This document presents the results of the 2002 groundwater monitoring events at the Iowa Army Ammunition Plant (Iowa AAP), in Middletown, Iowa. These activities included the installation-wide annual monitoring event (spring), Trench 5 semiannual groundwater monitoring events (May and November), Trench 7 Corrective Action Management Unit (CAMU) quarterly monitoring events (May, August, November), and the off-site monitoring event (November). Specific monitoring reports for off-site monitoring and Trench 7 CAMU are presented in Appendices C and E, respectively. A data summary for the Trench 5 May and November 2002 results is included in Appendix D. These appendices include sampling activities and data results for the Spring 2002 event and the other sampling events conducted at those sites throughout the remainder of 2002. Iowa AAP sites are listed in Table 1.1. The location of Iowa AAP and the layout of the Iowa AAP facility are shown on Figures 1.1 and 1.2, respectively.

1.1 PROJECT AUTHORITY

The Iowa AAP facility signed an interagency agreement (IAG) (dated September 20, 1990) with the United States Environmental Protection Agency (USEPA) Region 7. The IAG requires that the monitoring of releases of contaminants into groundwater and surface water be monitored, and that the migration pathways be identified. Groundwater monitoring and other environmental investigations at Iowa AAP are being completed under the Department of Defense's (DoD) Defense Environmental Restoration Program (DERP).

HydroGeoLogic has completed the 2002 groundwater monitoring events at the Iowa AAP. Work for this assignment is being completed for the U.S. Army Corps of Engineers (USACE) – Omaha District in accordance with the requirements of Delivery Order No. DK02 of Contract No. DACA41-02-D-0004.

1.2 GROUNDWATER MONITORING PURPOSE AND SCOPE

The primary purpose of groundwater monitoring at Iowa AAP is to monitor releases of contaminants into groundwater and surface water, identify potential migration pathways, and monitor remedial actions. An additional objective was to identify potential natural attenuation (NA) processes that may be occurring in groundwater on a site-by-site basis.

The scope of work for the Spring 2002 groundwater monitoring event generally consisted of:

• Completing a facility-wide measurement of groundwater levels.

• Sampling groundwater from monitoring wells at 21 sites at Iowa AAP, at the plant boundary, and in general areas. Table 1.1 highlights these 21 sites. Laboratory analyses were selected on a site-by-site basis, but generally included explosives, metals, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), uranium, and radionuclides. At selected sites, groundwater samples also were analyzed for natural attenuation parameters.

• Sampling surface water at several locations on the Iowa AAP property, including those along Long Creek, Brush Creek, Spring Creek, and selected tributaries of these creeks.

1.3 FACILITY DESCRIPTION

1

Iowa AAP is a government-owned, contractor-operated (GOCO) facility. The current operating contractor is American Ordnance (AO), under the command of the U.S. Army Joint Munitions Command. Production of munitions began in 1941 and the facility remains in operation. Production activities at Iowa AAP currently include loading, assembling, and packaging of munitions, including projectiles, mortar rounds, warheads, demolition charges, anti-tank mines and anti-personnel mines. The loading, assembling, and packaging operations use explosive materials and lead-based initiating compounds.

Iowa AAP occupies 19,015 acres in the town of Middletown in Des Moines County, Iowa (Figures 1.1 and 1.2). Iowa AAP is bordered by U.S. Highway 34 to the north, upland agricultural farms to the east and west, and the Skunk River Valley to the south. Surface topography is characterized by flat to gently rolling uplands dissected by entrenched streams and rivers. Approximately one-third of the Iowa AAP property is occupied by active or formerly active production or storage facilities. Sites include surface impoundments, production lines, landfills, disposal areas, burn areas, demolition areas, and a fire training area. The remaining land at Iowa AAP is either woodlands or is leased for agricultural usage. The facility map (Figure 1.2) shows site locations, creeks, and other features of interest.

Wastewater generated at various plant facilities and effluent from wastewater treatment plants are discharged to surface streams under the provisions of a National Pollutant Discharge Elimination System (NPDES) permit. It should be noted that the allowable NPDES discharge limits for explosives generally exceed the remediation criteria used to evaluate the groundwater and surface water analytical results discussed in this report. The production of munitions at the Iowa AAP has resulted in contamination of soil and groundwater, and the discharge of wastewater containing explosives and explosive by-products has caused contamination of surface water. The majority of contamination resulted from placing explosives and waste containing heavy metals directly onto soil and into surface water. Explosive contaminants and heavy metals have migrated through the soil into the groundwater and also over land into surface water. Moderate amounts of VOC contamination in soil and groundwater also have been identified at the facility.

1.4 **PREVIOUS INVESTIGATIONS**

Pursuant to the Resource Conservation and Recovery Act (RCRA) Hazardous and Solid Waste Amendments (HSWA) of 1984, the USEPA completed an assessment of the facility in 1987 and reported that releases had occurred (Ecology and Environment, Inc. [E & E], 1987). The Iowa AAP was subsequently proposed for the National Priorities List (NPL) and, in August 1990, the facility was placed on the NPL with a Hazard Ranking System (HRS) score of 29.73.

An IAG between the DoD and USEPA Region 7 was signed on September 20, 1990. Under the agreement, Iowa AAP investigations and remediation activities are being completed under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The agreement allows for RCRA and CERCLA activities at the site to be coordinated. In response to the IAG, in 1992 JAYCOR completed a facility-wide Preliminary Assessment/Site Inspection (PA/SI) of 44 sites with potential contamination that were listed in the IAG. Subsequently, in 1993 JAYCOR completed a facility-wide Remedial Investigation (RI)/Risk Assessment (RA) for approximately 35 of the sites. Two of the sites had ongoing RIs and were not addressed; the remaining seven sites were recommended for no further action. A complete list of previous soil and groundwater contamination investigations at Iowa AAP is provided in the 2003 Installation Action Plan (Iowa AAP, 2003)

The Iowa AAP facility is divided into three operable units (OUs) to facilitate project management. These are:

- Soils OU #1, to address contamination in the soils.
- Groundwater OU #3, to address contamination of groundwater within the Iowa AAP boundaries and (potentially) off-site.
- Facility-wide OU #4, to address closure of the Corrective Action Management Unit (CAMU), institutional controls, previously unaddressed areas of soil contamination, VOC-contaminated media, ecological risks, groundwater monitoring requirements, and any other unacceptable risks that may be identified but not addressed in either OU #1 or OU #3.

OU #2 originally was established for interim soil removal actions, but was subsequently merged into OU #1.

1.5 ENVIRONMENTAL SETTING

The fundamental geologic and hydrogeologic features, along with the prominent surface water bodies, are described in the following sections.

1.5.1 Geology

The Iowa AAP is located in the Dissected Till Plain section of the Central Lowland Province of the Southern Iowa Drift Plain Region. Iowa AAP is reported to be underlain by a sequence

U.S. Army Corps of Engineers-Omaha District

of unconsolidated glacial deposits of Pleistocene age overlying sedimentary bedrock units (IGS 1980). The glacial tills consist primarily of silty clay and clayey silt with thin sand seams and lenses and are assigned to the Kellersville Till Member (Illinoian Age) of the Glasford Formation of southeastern Iowa. The tills extend to depths in excess of 100 feet in portions of the north half of the Iowa AAP, but are thin or absent locally in deeper stream valleys in the south around Mathes Lake, and in the northeast.

The bedrock underlying Iowa AAP consists of a sequence of limestones interbedded with varying thicknesses of shales and sandstones ranging in age from Cambrian to Mississippian. Harris and Parker (1964) report that the uppermost bedrock unit beneath the site is the Mississippian Osage Series of southeastern Iowa, composed predominantly of cherty limestones interbedded with minor amounts of shale. The Osage series is divided into three members (from youngest to oldest): the Warsaw Formation, Keokuk Limestone, and Burlington Limestone. The Warsaw Formation consists primarily of blue-gray calcareous shales; fragmental, fossiliferous, dolomitic limestone; and calcarenites. Regionally, the general slope of the Mississippian Osage Series bedrock is toward the southwest.

1.5.2 Hydrogeology

In Des Moines County, Iowa, there are four principal aquifers: the surficial soils aquifer and the bedrock aquifers of Mississippian, Devonian, and Cambro-Ordovician units (IGS 1980). The shallow surficial soil aquifer at Iowa AAP occupies the upland till plain and is predominantly clay-rich glacial tills that exhibit low hydraulic conductivities and yield only small quantities of groundwater to wells. For the purposes of investigation and interpretation, this report describes the surficial soils aquifer using the following terminology: shallow till (typically containing the water table surface), intermediate till, and basal till. Within the tills, there are reportedly some occurrences of buried-channel sands that are laterally discontinuous across the facility. Depth to the water table surface in the shallow till is generally less than 10 to 15 feet. Shallow groundwater flow typically mimics surface topography. The low permeability of the clay till matrix limits lateral and vertical flow of groundwater. However, lateral and vertical flow may be less restricted (or more pronounced) in the tills that have welldeveloped fracture networks. Groundwater also discharges to the more deeply incised surface drainages (e.g., creeks) through seeps at the glacial till and bedrock outcrops.

Information on hydrogeological conditions in the bedrock aquifers underlying the deeper till is sparse. Generally, groundwater in the limestones is considered to occur primarily within open bedding planes and/or joints. Therefore, the occurrence and orientation of these features may, in part, control groundwater flow. It is common for much of the groundwater in these bedrock units to be found in the more fractured and weathered upper sequence just under the basal till. Where this is the case, the basal till and the uppermost Mississippian bedrock, defined in previous investigations (Harza 1997) as the uppermost 20 feet of bedrock underlying the till, may comprise a single hydraulic system. Facility-wide groundwater levels suggest that overall flow direction in the bedrock is to the south and east toward the Skunk and Mississippi Rivers, when not intercepted by incised surface drainages.

U.S. Army Corps of Engineers—Omaha District

ーバ

Water in the Devonian aquifer is reported to be highly mineralized and objectionably hard wherever it has been encountered in the county (IGS 1980). This Devonian aquifer contains high amounts of total dissolved solids, primarily sodium-potassium, chloride, and sulfate. The Cambro-Ordovician aquifer also yields water of poor quality. The water is noticeably hard and exceeds recommended standards for sulfate and dissolved solids. Water temperatures are reported to be higher (averaging 72 degrees Fahrenheit [°F]) than other rock aquifer sources (55 to 60 F).

1.5.3 Surface Water

The major drainage basins, creeks, and surface water bodies at Iowa AAP are shown on Figure 1.2. Little Flint Creek drains a small area in the north portion of the facility. The remainder of the Iowa AAP property is drained by, from west to east, the Skunk River, Long Creek, Brush Creek, and Spring Creek. Brush Creek and Long Creek are tributaries of the Skunk River, which flows to the Mississippi River. Spring Creek is a tributary of the Mississippi River.

1.6 TRANSFER OF SITE FROM ER,A TO FUSRAP

Line 1 and the West Burn Pad sites will be removed from the Long-Term Monitoring (LTM) Program, which is funded by Environmental Restoration, Army (ER,A), and transferred to the Formerly Utilized Sites Remedial Action Program (FUSRAP) in fiscal year 2003. Environmental remediation of soil and groundwater at Line 1 will be programmed, scheduled, and remediated under the FUSRAP program.

The remaining remedial actions at the West Burn Pads sites (in the southern portion) also will be conducted by FUSRAP. For portions of the West Burn Pads sites where remedial actions are complete, a groundwater fate and transport model will be developed, along with up to seven potential remedial technologies. The completion of the Feasibility Study (FS), Proposed Plan (PP), Record of Decision (ROD), and potential Remedial Design (RD)/Remedial Action (RA), and LTM will be completed by FUSRAP.

1.7 GROUNDWATER MONITORING REPORT ORGANIZATION

This groundwater monitoring report is organized as follows:

- Section 1 Introduction summarizes project authority, purpose, and scope; facility description; previous investigations; and environmental setting.
- Section 2 Field Activities summarizes field activities completed, including water level measurements, groundwater sampling, surface water sampling, and investigation derived waste (IDW) disposal.
- Section 3 Hydrogeologic Results presents and interprets water level data, hydraulic gradients, and potentiometric surface maps for each site.

U.S. Army Corps of Engineers-Omaha District

- Section 4 Chemical Investigation Results presents laboratory and field chemical data, data validation, and data review results.
- Section 5 Nature and Extent of Contamination presents and interprets chemical data above Preliminary Remediation Goals (PRGs) for each site.
- Section 6 Perchlorate Sampling presents a discussion of perchlorate sampling and analytical results with comparison to the PRG.
- Section 7 Natural Attenuation Parameter Results presents and interprets field and laboratory natural attenuation parameter data facility wide and for each site.
- Section 8 Recommended Monitoring Well Maintenance presents results of well inspections and provides well maintenance recommendations.
- Section 9 References provides references used to develop this report.

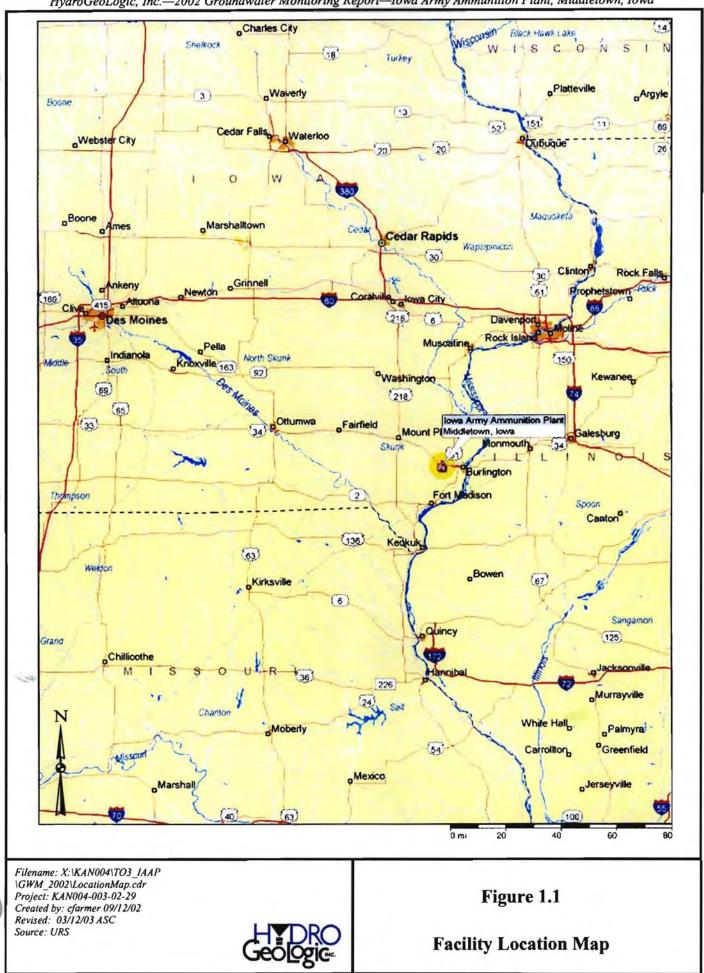
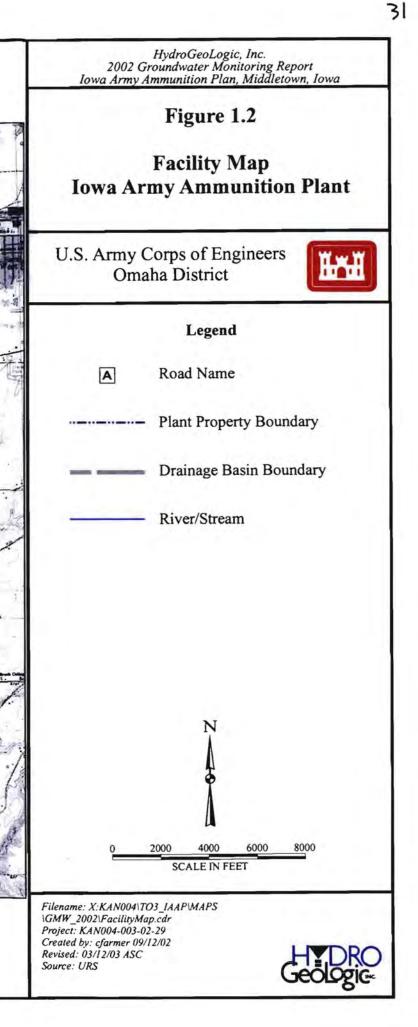

Site Designation	Site Name
None	Plant Boundary / General Area
IAAP-1, IAAP-16	Line 1 and Line 1 Impoundment, FUSRAP in FY03.
IAAP-2	Line 2 - Soil
IAAP-2G	Line 2 - Groundwater
IAAP-3	Line 3 - Soil
IAAP-3G	Line 3 - Groundwater
IAAP-4, IAAP-41, IAAP-29	Line 3A, Line 3A Pond, and Line 3A STP - Soil
IAAP-4G	Line 3A - Groundwater
IAAP-5	Lines 4A and 4B
IAAP-6	Lines 5A and 5B
IAAP-7	Line 6
IAAP-8	Line 7
IAAP-9	Line 8
IAAP-10	Line 9 - Soil
IAAP-10G	Line 9 - Groundwater
IAAP-11, IAAP-44	Line 800, Pink Water Lagoon - Soil
IAAP-44G	Line 800, Pink Water Lagoon - Groundwater
IAAP-12	East Burn Pads - Soil
IAAP-12G	East Burn Pads - Groundwater
IAAP-13	Incendiary Disposal Area
IAAP-14	Boxcar Unloading Area
IAAP-15	Old Flyash Waste Pile
IAAP-17	Pesticide Pit
IAAP-18	Possible Demolition Site
IAAP-19	Contaminated Clothing Laundry
IAAP-20	Inert Disposal Area - Soil
IAAP-20G	Inert Disposal Area - Groundwater
IAAP-21, IAAP-23	Demolition Area, Deactivation Furnace
IAAP-22	Unidentified Substance Waste Site
IAAP-24	Contaminated Waste Processor
IAAP-25	Explosive Waste Incinerator
IAAP-26	Sewage Treatment Plant/Sludge Drying Beds
IAAP-27, IAAP-43	Flyash Landfill, Flyash Disposal Area
IAAP-28	Construction Debris Landfill
LAAP-30	Firing Site
IAAP-31	Ammunition Box Chipper Disposal Pit
IAAP-34, IAAP-35, IAAP-32, IAAP-33	West Burn Pads, West Burn Pads Landfill, Burn Cage Burn Cages Landfill - Soil. FUSRAP in FY03.

TABLE 1.1 OWA ARMY AMMUNITION PLANT SITES

Site Designation	Site Name
IAAP-32G	West Burn Pads, West Burn Pads Landfill, Burn Cages, Burn Cages Landfill - Groundwater. FUSRAP in FY03.
IAAP-36, IAAP-37	North Burn Pads, North Burn Pads Landfill
IAAP-38	Building 600-86 Septic System
IAAP-39	Fire Training Area - Soil
IAAP-39G	Fire Training Area - Groundwater
IAAP-40	Roundhouse Transformer Storage Yard
IAAP-42	Abandoned Coal Storage Yard
IAAP-45	Former Fuel Station USTs
IAAP-46	Off-Post Groundwater

TABLE 1.1 IOWA ARMY AMMUNITION PLANT SITES

Note: Shading indicates sites at which groundwater samples were collected.



N FLINT 1.11.5 Yard "L" SPRING CREEK E LONG CREEK B Line 5 Ammunition Box Chipper Disposal Pit Line 1 捕 G Yard N North Burn Pads 8. Yard East Burn Pads D Line 6 West Burn Pads Disposal Area Flyash Fire Training TOWN ARMY AMMUNITION PLANT. ine 3 Firing Site ARMY AMMUNITION PLANT Yard Line 3A Yard TO Demolition SKUNK BRUSH CREEK²¹ SKUNK

0

0

0

Section 2

2.0 FIELD ACTIVITIES

This section summarizes the field activities completed during the Spring 2002 groundwater monitoring event. Known monitoring well/piezometer locations at the facility are shown on Figure 2.1. Field activities included:

- Measuring water levels at 274 selected monitoring well and piezometer locations.
- Measuring water quality parameters during monitoring well purging (e.g., dissolved oxygen [DO], oxidation reduction potential [ORP], pH, temperature, specific conductance, turbidity).
- Collecting and analyzing groundwater samples from 190 selected monitoring wells.
- Collecting and analyzing surface water samples from 22 locations along Long Creek, Brush Creek, Spring Creek, and tributaries of Brush Creek and Spring Creek.
- Collecting and analyzing one sample of the water source used for decontamination for each event.
- Collecting and analyzing one rinsate from the Fultz[®] sampling pump
- Disposal of IDW (personal protective equipment [PPE] only) at the Inert Disposal Area (IDA). Purge and decontamination waters were containerized at the Line 1 impoundment for treatment per the direction of USACE.
- Documenting all field activities.

All field activities were completed in accordance with the Spring 2002 Groundwater Monitoring Work Plan Addendum (HydroGeoLogic 2002), and the Standard Operating Procedure (SOPs) included in the Final Facility-Wide Work Plan (URS 2002a).

Because of heightened security at the Iowa AAP facility access and egress from the facility was problematic during the Spring 2002 monitoring event. Delays due to more intense scrutiny (i.e. exhaustive vehicle/cargo searches) of contractors working at Iowa AAP resulted in additional expenditures in labor and costs associated with completing the field activities.

2.1 GROUNDWATER LEVEL MEASUREMENT ROUNDS

A facility-wide groundwater level measurement round was completed during the Spring 2002 groundwater monitoring event. The water level data were used to create site-specific groundwater elevation diagrams and to determine horizontal and vertical gradients at each site. All monitoring wells and piezometers were considered for potential water level measurement and those selected were determined using the following criteria:

- The monitoring wells and piezometers must first have been located on a map.
- The monitoring wells or piezometers must have been accessible.
- The monitoring wells or piezometers must have had a surveyed reference point from which to measure the water level (i.e., top of casing [TOC]).

Using these criteria, groundwater levels measurement at 279 locations was proposed in the work plan (HydroGeoLogic 2002). However, five monitoring well and piezometer locations were eliminated from the Spring 2002 round for the following reasons:

- One well (NEP-C) had previously been abandoned.
- Two wells (SL-87, SL-91) could not be located. It should be noted that these two wells could not be located during previous water level measurement rounds.
- The lid of one well (Z1-2) could not be removed to collect the water level. It should be noted that it has not been possible to remove the well lid of Z1-2 during previous water level measurement rounds.
- One well (JAW-13) was dry.

Water levels were measured throughout the installation June 1 and 2, 2001, except for one location inside Line 4A (JAW-605) for which access was arranged at a later date. Water levels in the Inert Disposal Area were measured on May 29, 2002, except for one well (G-5) where maintenance on the security casing lock delayed reading of the water level until June 2, 2002. In addition, a water level measurement from monitoring well G-10 was inadvertently not taken during the water level measurement round, but was obtained before it was sampled on June 13, 2002.

Groundwater level measurements were completed in as short a time period as practical to minimize the effects of water table fluctuations. Water levels were measured from the surveyed reference point found on the top of the well casing, using a Solinist Model 101 electronic water level meter. The water level meter was decontaminated between measurements at each of the monitoring well and piezometer locations with deionized (DI) water. All measurements were recorded in the field logbooks maintained by the sampling teams.

Groundwater levels and occurrences are discussed in Section 3.0 of this report.

2.2 WELL PURGING AND MEASUREMENT OF WATER QUALITY PARAMETERS

The purpose of well purging is to obtain representative, aquifer-quality water from the geologic unit being sampled, while minimizing disturbance to the collected samples. Low-flow techniques were attempted in each well to minimize turbidity and purge water volumes. The goal of low-flow purging is to maintain less than 0.3 feet of drawdown at a pumping rate not to exceed 500 milliliters per minute (mL/min). Groundwater purging procedures included:

• Before sampling, the air quality in the well casing and the breathing zone was monitored with a RAE Systems MiniRae photoionization detector (PID) equipped with a 10.6 electron volt (eV) lamp. Air quality measurements were recorded in the field logbooks. If organic vapors were detected in the well casing, the well was sampled for

U.S. Army Corps of Engineers—Omaha District

VOCs along with the previously planned analytes for that well. No elevated PID readings were observed during Spring 2002 at wells not already scheduled for VOCs analysis.

- The depth to groundwater was measured and the volume of water to be purged was • calculated in the event that drawdown exceeded 0.3 feet.
- Eighty-five of the sampled wells were equipped with Well Wizards (dedicated bladder pumps), which were used when purging and sampling. Where no dedicated sampling pumps were available, or they were not functioning, a portable Fultz[®] sampling pump with virgin disposable tubing was used.
- The depth to groundwater was monitored during purging to determine drawdown.
- Water quality parameters were measured and recorded at all groundwater sampling locations. Specific conductance, pH, temperature, ORP, and DO were measured using the YSI 556 probe fitted with a flow-through cell. Turbidity was measured using a Lamotte 2020 turbidity meter. At specified well locations, ferrous iron was measured by Method 8146, using a HACH DR/820 Colorimeter.
- The field instruments were calibrated to the manufacturers' specifications prior to shipment to the field. Verification of field instrument calibrations (and recalibration, as necessary) were completed daily during the field event. The YSI 556 was calibrated using certified standards and 5 percent sodium sulfite solutions.
- All water quality measurements were recorded on the water sample collection field sheets (included in Appendix A).

Final water quality parameter measurements (i.e., those recorded immediately before sampling) recorded during the Spring 2002 groundwater monitoring event are presented in Section 4.0.

Well purging was completed in accordance with the SOPs included in the Final Facility-Wide Work Plan (URS 2002a). Sample collection field sheets, included in Appendix A, give the detailed purging procedures used at each well.

2.3 SPRING 2002 GROUNDWATER SAMPLING AT MONITORING WELLS

Monitoring well sampling locations, dates sampled, and analytical parameters for the Spring 2002 groundwater monitoring event are presented in Table 2.1. Section 5.0 provides a discussion of the analytical results. Monitoring well locations are shown on the facility-wide well location map (Figure 2.1) and individual site maps in Section 5.0.

The Spring 2002 groundwater sampling event included the following elements:

Sampling of 190 monitoring wells May 29 through June 30, 2002. Although 195 monitoring well locations were originally intended to be sampled, five wells were dry at the time of sampling. The dry wells were JAW 32 and JAW-33 (Firing Site); JAW-23 (West Burn Pads); G-53 (Boundary Area); and the Pesticide Pit sump.

- 47 samples were collected for cyclotrimethylenetrinitramine (RDX) metabolite analysis at Line 800, Line 2, and Line 3. The majority of these samples were collected at Line 800. The RDX metabolite samples were shipped to Lawrence Livermore National Laboratory (LLNL) for analysis, and were not reported to HydroGeoLogic. It should be noted that the mononitroso- RDX metabolite, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), also was analyzed for in the samples submitted to the laboratory contracted for the Spring 2002 monitoring event, and those results are included in this report.
- Perchlorate samples were collected from 27 locations at the following sites: East Burn Pads, North Burn Pads Landfill, Inert Disposal Area and Line 800. Perchlorate results are discussed separately in Section 6.0

QC duplicate samples were collected at approximately 6 percent frequency (i.e., 1 per every 15 samples collected). QC matrix spike/matrix spike duplicate (MS/MSD) samples and Quality Assurance (QA) split samples were collected at approximately 4 percent frequency (1 per every 26 samples collected). QA/QC samples are discussed in Section 4.0. QA/QC sample locations are noted in Table 2.1.

The groundwater sampling effort was completed in accordance with the SOPs provided in the Final Facility-Wide Work Plan (URS 2002a) and the Spring 2002 Groundwater Monitoring Work Plan Addendum (HydroGeoLogic, 2002). All groundwater samples were collected into approved sample containers, preserved, and labeled appropriately. Samples (including QC samples) were packed in coolers with wet ice to 4 °C, and shipped to Laucks Testing Laboratory, Inc (Laucks) at 940 South Harney Street, Seattle, Washington via Federal Express for analysis. The QA split samples were packed as described above and shipped to the USACE Environmental Chemistry Branch (420 South 18th Street, Omaha, Nebraska) via Federal Express for analysis.

2.4 SPRING 2002 SURFACE WATER SAMPLING

The Spring 2002 groundwater monitoring event included the collection of 22 surface water samples at Iowa AAP: 12 locations along Brush Creek and its tributaries, 8 locations along Spring Creek and its tributaries, and 2 locations on Long Creek. These locations are situated primarily upgradient, downgradient, and along Line 1, Line 2, Line 800, the Fire Training Area/Explosives Disposal Area, and the Firing Site.

The Long Creek and Spring Creek surface water samples were collected on May 30-31, 2002. Brush Creek surface water samples were collected on June 15, 2002.

The surface water sampling effort was completed in accordance with the SOPs provided in the Final Facility-Wide Work Plan (URS 2002a) and the Spring 2002 Groundwater Monitoring Work Plan Addendum (HydroGeoLogic 2002). Surface water sampling locations, dates sampled, and analytical parameters are presented on Table 2.1. Surface water samples were retrieved using disposable buckets or Teflon[®] bailers and the sample was transferred to

approved sample containers. Samples were appropriately preserved, labeled, packed in coolers with wet ice to 4 °C, and shipped to Laucks via Federal Express for analysis.

2.5 WATER SOURCE SAMPLING

One water source sample was collected to check for contamination in the water used for decontamination. Culligan of West Burlington provided the DI water used for all decontamination activities. The DI water was bottled by Culligan in pre-cleaned, polycarbonate, 5-gallon containers. Culligan personnel delivered the DI water containers to the site. The water source sample was collected and analyzed for VOCs, semivolatile organic compounds (SVOCs), and explosives. The water source sample results are discussed in Section 4.0.

2.6 RINSATE SAMPLING

One rinsate sample was collected during the Spring 2002 groundwater monitoring event to check for cross contamination from sampling equipment. Source water was run through a decontaminated Fultz[®] sampling pump attached to a short length of virgin disposable tubing and the rinse water was collected in the appropriate containers. The rinsate sample was analyzed for VOCs, SVOCs, and explosives. The rinsate sample results are discussed in Section 4.0.

2.7 IDW DISPOSAL

IDW generated during the Spring 2002 groundwater monitoring event included purge water, decontamination water, and personal protective equipment (PPE). All purge and decontamination water was containerized and transported to the Line 1 impoundment area, except that accumulated during the sampling of wells in the IDA. At the Line 1 impoundment, the IDW water was discharged into two 450-gallon poly tanks for treatment through a granular activated carbon (GAC) treatment unit. The IDW water from the IDA monitoring wells was discharged into IDA Trench 6 for treatment through a GAC system. The volume of water accumulated for treatment was recorded on waste manifest tracking forms provided to the USACE on-site construction representative. PPE was bagged and disposed in Trench 6. All disposal was coordinated with the USACE on-site construction representative. IDW disposal procedures were completed in accordance with the Spring 2002 Groundwater Monitoring Work Plan Addendum, except that the location for storage of the IDW water prior to its treatment through a GAC system was moved to the Line 1 impoundment area at the direction of USACE (HydroGeoLogic 2002).

	3		A	nalytic	cal Par	amete	rs		ير ي			5	ite	
Site Name, (IAAP Site Designation)/ Well Number	Date Sampled	Explosives	Metals	VOCs	SVOCs	Radionuclides	Total Uranium	Natural Attenuation	QC Duplicates ³	MS/MSD ³	QA Split ⁴	Perchlorate ⁵	RDX Metabolite ⁶	Notes
Line 1, (IAAP-1) / Line 1 Impo	undment, (l	AAP-1	16)											
JAW-39	06/17/02	X	X					Х						
JAW-40*	06/18/02	X	X					X						
JAW-43	06/16/02	X	X					Х						
JAW-45	06/16/02	Х	X					X						
JAW-48	06/11/02	Х	X					Х						
JAW-50	06/11/02	X	X					X						
JAW-51	06/11/02	Х	X					X						
JAW-601*	06/12/02	X	X					X			1			
JAW-602	06/11/02	X	X					X		x				JAW-602 MS/MSD
JAW-603*	06/12/02	Х	X					X						
SL-81	06/05/02	Х	X					X						
L1-MW1*	06/12/02	х	x					X			1			
Line 2, (IAAP-2)														
G-15	06/07/02	X	X		1			X						
12-A	06/04/02	X	X					X		t	1			
12-B	06/04/02	X	X					X		<u> </u>				
12-C*	06/05/02	X	X					X						
12-D	06/04/02	X	x					X						
12-E	06/05/02	x	x					X						
12-F*	06/14/02	X	x					X						
12-G	06/05/02	X	x				<u> </u>	X						
JAW-70	06/04/02	X	x					X	x		x		X	OC Dup=L2-MW4, QA split=explosives only
JAW-71	06/04/02	X	X					X	<u>^</u>				X	
JAW-72	06/04/02	X	x					X					X	
JAW-73	06/04/02	X	X					X						<u> </u>
JAW-74	06/05/02	X	x					x						<u> </u>
JAW-75	06/04/02	X	X					X					<u> </u>	
L2-MW1*	06/05/02	X	X			<u> </u>		X						<u> </u>
L2-MW1	06/04/02	X	X					x						
L2-MW2	06/05/02	X	X			<u> </u>		X						
Line 3, (IAAP-3)	00/05/02	л	Λ											·
16-A	06/03/02	x	X					x						
16-B	06/03/02	x	X					X						<u> </u>
16-D	06/03/02	X	X					x						<u>├</u>

3

			A	nalyti	cal Par	amete	rs		ي ي			5	lte	
Site Name, (IAAP Site Designation)/ Well Number	Date Sampled	Explosives	Metals	VOCs	SVOCs	Radionuclides	Fotal Uranium	Natural Attenuation	QC Duplicates ³	MS/MSD ³	QA Split ⁴	Perchlorate ⁵	RDX Metabolite ⁶	Notes
Line 3, (IAAP-3), continued														·
16-D	06/03/02	x	X					X						
16-E*	06/03/02	Х	X					x						
JAW-53	06/03/02	х	X	1				X						
JAW-54	06/03/02	X	X					х	х				х	OC Dup=L3-MW1
JAW-55	06/15/02	Х	Х					x			1			
JAW-56	06/16/02	Х	X					x						
JAW-57	6/0302	Х	X					x		x				JAW-57 MS/MSD
JAW-77	06/16/02	X	X		1			X						
Line 3A, (IAAP-4) / Line 3A P	ond, (IAAP-	41) / L	ine 3A	STP,	(IAAF	-29)								·
JAW-15	06/15/02	X	X					X						
JAW-16*	06/16/02	X	Х					x						
JAW-17	06/05/02	х	X					x						
JAW-18	06/03/02	X	x					X						
JAW-19	06/05/02	Х	X			_		x						
JAW-20	06/15/02	х	x				-	x						
JAW-21	06/15/02	Х	Х					X						
JAW-22	06/05/02	X	X					x						
Line 4A and 4B, (IAAP-5)											-			
JAW-604	06/27/02	X	X	X ²										
JAW-605	06/05/02	X	x	x ²				_						
Line 5A and 5B, (IAAP-6)											· · · ·			
5A-MW1	06/16/02	X	X	X ²			_	X			X			QA Split=Explosives/Metals
5A-MW2	06/16/02	X	x	$\frac{n}{X^2}$				X						
5B-MW1	06/16/02	X	X	$\frac{\Lambda}{\chi^2}$				X						
5B-MW2	06/16/02	x	X	x ²				x			1			
Line 9, (IAAP-10)											-			
JAW-29*	06/28/02	Х		X ²	X			X						
JAW-30	06/27/02	X		$\frac{1}{x^2}$	X			X						
JAW-31*	06/27/02	X		$\frac{x}{x^2}$	x			x						
JAW-610	06/26/02	X		$\frac{x}{x^2}$	X			x			1			
JAW-611	06/26/02	X		$\frac{\Lambda}{\chi^2}$	X			x			1			
JAW-612	06/27/02	<u> </u>		x ²	x			x	x					OC Dup = L9 - MW1
Line 800, (IAAP-11) / Pink Wa			P-44)											
G-17	06/13/02	X						x				X	X	
G-18	06/30/02	X	-	X ²				X	x			X	x	QC Dup=800-MW-27

~

	Ţ		A	nalytic	cal Par	amete	rs		ES.J			2	lte	
Site Name, (IAAP Site Designation)/ Well Number	Date Sampled	Explosives	Metals	VOCs	SVOCs	Radionuclides	Total Uranium	Natural Attenuation	QC Duplicates ³	MS/MSD ³	QA Split ⁴	Perchlorate ⁵	RDX Metabolite ⁶	Notes
Line 800, (IAAP-11) / Pink Wa		(IAAI	?-44), (continu	ıed									· · · · · · · · · · · · · · · · · · ·
<u>G-19</u>	06/30/02	X						X				X	X	
G-20	06/13/02	X		X ²				X	Х			X	X	QC Dup=800-MW-28
G-40*	06/27/02	X		X ²				X					X	
G-41	06/25/02	X						X					X	
G-42	06/13/02	X											X	
G-43	06/26/02	X						X					х	
G-44	06/30/02	Х						X		x			Х	G-44 MS/MSD
G-45	06/30/02	X		X ²				X					Х	
G-46*	06/30/02	Х						X					х	
G-47	06/29/02	Х						X					х	
G-48	06/25/02	Х						X					х	
G-56	06/14/02	Х						X					X	
G-57*	06/29/02	Х						X					х	
G-58	06/28/02	Х						X				х	Х	
JAW-78	06/28/02	Х						X					Х	
JAW-79	06/27/02	Х		\mathbf{X}^2				X					х	
800-MW-1	06/28/02	X			1			X					х	
800-MW-2*	06/30/02	X		X ²				X					X	
800-MW-3*	06/15/02	<u>x</u>	:					X					x	
800-MW-4*	06/14/02	X						x					x	
800-MW-5*	06/30/02	Х						X	X		X	X	X	QC Dup=800-MW-29 (Explosives), QA Split=800-MW-5(Explosives)
800-MW-6	06/29/02	Х		X ²				X					Х	
800-MW-7	06/30/02	Х		X ²	1		———	X					x	
800-MW-8	06/27/02	х			1			X					Х	
800-MW-9	06/14/02	Х						X					Х	
800-MW-10	06/18/02	X						X					Х	
800-MW-11	06/18/02	X						x					X	
800-MW-12	06/27/02	Х						X		-			Х	
800-MW-13	06/27/02	X						x					Х	
800-MW-14*	06/14/02	X						X					X	
800-MW-15	06/30/02	X					1	x					X	
800-MW-16*	06/30/02	X					1	X					Х	
800-MW-17	06/29/02	X					<u> </u>	X					Х	
800-MW-18	06/28/02	X						x				X	Х	
800-MW-19	06/18/02	X						x					Х	

40

			A	nalytic	cal Par	amete	rs						te	
Site Name, (IAAP Site Designation)/ Well Number	Date Sampled	Explosives	Metals	VOCs	SVOCs	Radionuclides	Total Uranium	Natural Attenuation	QC Duplicates ³	MS/MSD ³	QA Split ⁴	Perchlorate ⁵	RDX Metabolite ⁶	Notes
Line 800, (IAAP-11) / Pink Wa	ter Lagoon,	(IAA)	P-44), (continu	ied		-							
800-MW-20*	06/30/02	X						X					х	
800-MW-21	06/28/02	X						X					х	
800-MW-22	06/14/02	X						X					х	
800-MW-23*	06/26/02	Х						X					X	
800-MW-24	06/28/02	Х		1				x					X	
800-MW-25	06/28/02	Х		1				X					x	
800-MW-26	06/14/02	х						X					X	
East Burn Pads, (IAAP-12)				· · · · ·										
EDA-01	06/10/02	X	X		X			X	-					
EDA-02*	06/26/02	X	x	X ²	X			X				X		
EDA-03	06/25/02	Х	x	X ²	X			X	x	<u> </u>		X		OC Dup = EBP-MW4
EDA-04	06/25/02	Х	X	X ²	X			x	x		x	х	_	QC Duplicate = EBP-MW-5 (no SVOCs), QA Split = Explosives
G-29	06/10/02	X	X	X ²	X			X						
JAW-04*	06/28/02	X	Х	x ²	x							х		Insufficient sample volume for NA parameters
JAW-05	06/10/02	X	X	X ²	X			X	-			х		
JAW-06	06/25/02	X	Х	X ²	x			X	_	1				
JAW-07	06/10/02	X	Х	X ²	X			X		1				
JAW-64	06/10/02	Х	X	X ²	x			X						
JAW-614	06/25/02	X	X	X ²	X			X				Х		
EBP-MW1*	06/27/02	Х	X	X ²	X			X						Insufficient sample volume for TKN, Sulfide, Alkalinity
EBP-MW2	06/10/02	Х	x	x ²	X			X		x				EBP-MW2 MS/MSD
EBP-MW3	06/10/02	х	x	x ²	x			X	-		_			
Pesticide Pit, (IAAP-17)														
Sump	DRY							1						Insufficient water for sampling
Inert Disposal Area, (IAAP-20)	_									_				
<u> </u>	06/04/02	X	X	X ²	X									
T-5*	06/03/02	X	X	X ²	X						_			
IDA-MW1	05/31/02	X	X	$\frac{\pi}{x^2}$	X				х			Х		QC Dup=IDA-MW3
IDA-MW2*	06/01/02	X	X	x ²	X									<u> </u>
CAMU-99-1S*	05/31/02	X	X	x ²	X			1						
CAMU-99-1D*	05/31/02	X	X	x ²	X					1				· · · · · · · · · · · · · · · · · · ·
CAMU-99-2S	05/29/02	X	X	\mathbf{x}^2	x			1				<u> </u>		
CAMU-99-2D*	05/31/02	X	X	\mathbf{X}^2	x					-				· · · · · · · · · · · · · · · · · · ·
CAMU-99-3S*	05/30/02	X	X	\mathbf{x}^2	X									

<u>£</u>

	-		A	nalytic	al Par	amete	rs		∩				te	
Site Name, (IAAP Site Designation)/ Well Number	Date Sampled	Explosives	Metals	vocs	SVOCs	Radionuclides	Total Uranium	Natural Attenuation	QC Duplicates ³	MS/MSD ³	QA Split ⁴	Perchlorate ⁵	RDX Metabolite ⁶	Notes
Demolition Area, (IAAP-21) / I	Deactivation	Furna	ce, (IA	AP-23)									
JAW-01	06/12/02	X	Х					X				_		
JAW-02*	06/13/02	X	X					X						
G-9*	06/13/02	X	X					X						
G-10*	06/13/02	X	X					X						
G-11*	06/13/02	Х	X					x						
DA-01	06/12/02	Х	X					X						
DA-02	06/12/02	X	X					X						
Firing Site, (IAAP-30)														
JAW-32	DRY								_					
JAW-33	DRY													
JAW-34	06/28/02	Х	X ¹			Х	X							
JAW-618	06/27/02	Х	X ¹			L X	X		X					QC Dup=JAW-100
Ammunition Box Chipper Disp	osal Pit, (IA	AP-31) _						-					
JAW-620	06/13/02	X	Х		X									
West Burn Pads, (IAAP-34) / V	V <u>est Burn Pa</u>	ads La	ndfill,	(IAAF	-35) /	Burn (Cages,	(IAAI	<u>-32)</u> /	Burn (Cages 1	Landfi	ll, (IA	AP-33)
JAW-23*	DRY								_					Insufficent water for sampling
JAW-24	06/24/02	X	X	X^2				X			i			
JAW-25	06/13/02	X	X	X ²				X						
JAW-68	06/14/02	X	X	X^2				X		X				JAW-68 MS/MSD
G-30*	06/15/02	X	X	X ²				X						
WBP-99-1*	06/11/02	х	X	X ²				X						
WBP-99-2	06/12/02	X	X	X ²				X	X		X			QC Dup=WBP-99-8, QA Split=(VOC's, Explosives, and Metals)
WBP-99-3*	06/11/02	X	х	X^2				X						
WBP-99-4*	06/13/02	X	X	X ²				X						
WBP-99-5	06/12/02	X	X	X ²				X						
WBP-99-6*	06/30/02	X	X	X ²				X						
WBP-99-7*	06/11/02	X	X	X ²				X						
North Burn Pads, (IAAP-36) /]	North Burn	Pads I	Landfil	l, (IAA	P-35)	/ Con	tamina	ted W	aste Pi	ocesso	r, (IA	AP-24)		
JAW-11	06/13/02	X	X					X				X		
JAW-12*	06/14/02	X	X					X						
JAW-13	06/14/02	X	X					X						
JAW-14*	06/14/02	X	X					X				X		
JAW-626	06/14/02	X	X					X				X		
JAW-627	06/14/02	X	X					X	X			Х		QC Dup=NBPLF-MW2

れて

			A	nalytic	al Par	amete	rs		۲°3			5	lte	
Site Name, (IAAP Site Designation)/ Well Number	Date Sampled	Explosives	Metals	VOCs	SVOCs	Radionuclides	Fotal Uranium	Natural Attenuation	QC Duplicates ³	MS/MSD ³	QA Split ⁴	Perchlorate ⁵	RDX Metabolite ⁶	Notes
North Burn Pads, (IAAP-36) /	North Burn	Pads 1	Landfi	II. (IA/	P-35)	/ Cont		ted Wa	aste Pr	ocesso	r. (IA/	P-24)	. conti	
NBPLF-MW1*	06/13/02	X	X					X			, , , , , , , , , , , , , , , , , , , ,			
<u>CW-P</u>	06/10/02	X	X					x				X	_	
Fire Training Area, (IAAP-39)														
JAW-58	06/24/02	Х	X	\mathbf{X}^2				X						
JAW-59	06/18/02	х	X	X ²				X						
JAW-60	06/18/02	Х	X	\mathbf{X}^2				X					_	
JAW-61	06/18/02	X	X	$\overline{X^2}$				X			х			QA Split=VOCs
JAW-62	06/18/02	X	X	<u>X²</u>				X						
JAW-63	06/18/02	X	X	\mathbf{X}^2				X						
JAW-80	06/18/02	X	X	$\overline{X^2}$				X						
M-01	06/12/02	X	X	X ²				X						
SA-99-1	06/18/02	X	X	X ²				X	X		X			QA Split=(metals)
FTA-99-1	06/17/02	X	X	\mathbf{X}^2				X			X			QA Split=VOCs
FTA-99-2*	06/18/02	Х	X	\mathbf{X}^2				X						
Plant Boundary and General A														
<u>G-1*</u>	06/16/02	Х	X		1									
<u>G-2</u>	06/15/02	X	X											
G-3*	06/17/02	Х	X											
G-12	06/24/02	X	X											
G-13	06/17/02	X	X	1										
G-21	06/17/02	Х	X											
G-22*	06/18/02	X	X											
G-23	06/17/02	X	X											
G-24	06/17/02	X	X											
G-25*	06/25/02	X	X											
G-26*	06/25/02	X	X											
G-27	06/18/02	Х	X											
G-28	06/11/02	X	X											
G-31	06/24/02	X	X											
G-49	06/15/02	X	X	<u> </u>										
	06/25/02	X	X	1										
G-52	06/05/02	X	X	1				1	_					
G-53*	DRY													
G-54	06/25/02	Х	X											
G-55*	06/25/02	X	X		<u> </u>					1				
13-B	06/24/02	Х	X							1				
13-D*	06/16/02	Х	X											

رځ

			A	nalytic	al Par	amete	rs —	•	°.				°.	
Site Name, (IAAP Site Designation)/ Well Number	Date Sampled	Explosives	Metals	vocs	SVOCs	Radionuclides	Total Uranium	Natural Attenuation	QC Duplicates ³	MS/MSD ³	QA Split ⁴	Perchlorate ⁵	RDX Metabolite ⁶	Notes
Plant Boundary and General An	rea, continu	ed												
13-E*	06/16/02	X	x											
13-F*	06/25/02	Х	X											
JAW-76	06/17/02	X	X											
Surface Water														
Long Creek 1	05/30/02	X	X'			X			X					OC Dup=LC3
Long Creek 2	_05/30/02	X	X			X								<u> </u>
Brush Creek 1	06/15/02	X	X											
Brush Creek 2	06/15/02	х	X											
Brush Creek 3	06/15/02	х	x					_						
Brush Creek 4	06/15/02	X	X											
Brush Creek 5	06/15/02	х	x											
Brush Creek 6	06/15/02	X	x											
Brush Creek 7	06/15/02	X	x											
Brush Creek Tributary 1	06/15/02	X	x											
Brush Creek Tributary 2	06/15/02	Х	X											
Brush Creek Tributary 3	06/15/02	Х	x											
Brush Creek Tributary 4	06/15/02	X	X											
Surface Water, Continued								•J			-			
Brush Creek Tributary 5	06/15/02	X	X											
Spring Creek 1	05/31/02	X	X	x ²				(
Spring Creek 2	05/31/02	X	X	$\frac{\pi}{X^2}$	r		<u> </u>						<u> </u>	
Spring Creek 3	05/31/02	x	x	$\frac{\pi}{x^2}$										
Spring Creek 4	05/31/02	X	x	x ²	-									
Spring Creek 5	05/31/02	X	X	$\frac{\pi}{X^2}$	1					<u> </u>				
Spring Creek Tributary 1		X	x	$\frac{\Lambda}{X^2}$					<u> </u>		<u> </u>			
Spring Creek Tributary 2		X	X	x ²					x	X				QC dup=SCT4; SCT2 MS/MSD
Spring Creek Tributary 3		x	X	$\frac{\Lambda}{\chi^2}$					<u> </u>					
Other QC Samples					·									
Rinsate	06/29/02	X	Ī	X ²	X									
Source	06/25/02	X		X ²	X								L	
TOTALS Spring 2002		214	163	_75	32	4	2	159	14	5	8	19	45	

Key:

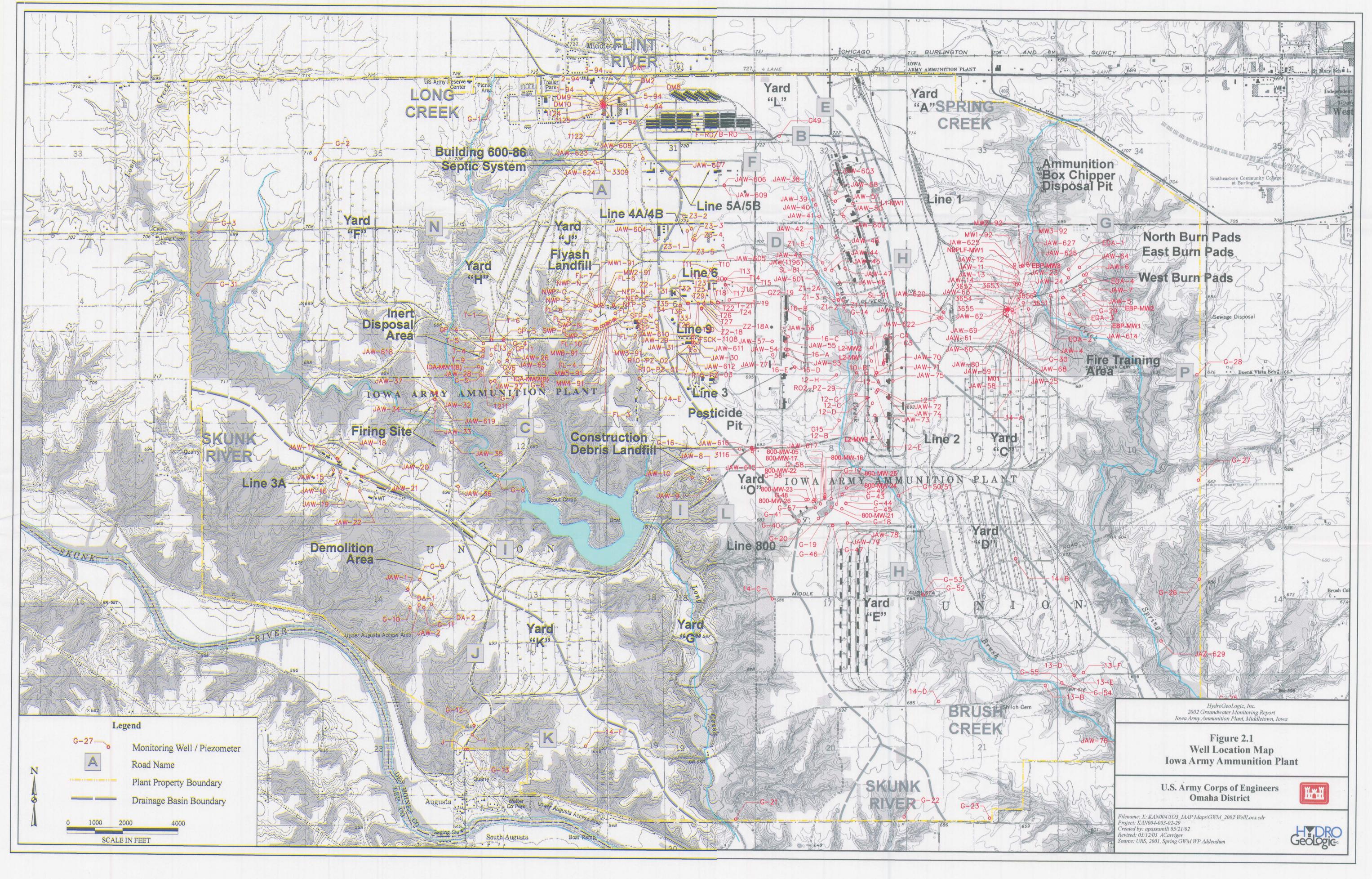
*The well was pumped dry.

QA and QC samples were collected at a 5 percent rate (i.e., 1 per every 20 samples collected).

¹Metals analysis included total Uranium.

²VOC analysis included Freon 113.

³QC Duplicate and MS/MSD samples were analyzed for each well's full suite of parameters, unless otherwise noted.


⁴QA Split samples were collected for explosives (7), VOCs (4), the noted suite of parameters as directed by USACE.

⁵Perchlorate samples were collected as directed by USACE.

⁶RDX Metabolite samples were collected for the Lawrence Livermore National Laboratory.

NS=Not Sampled

Z

Section 3

3.0 HYDROGEOLOGIC RESULTS

This section presents and interprets the hydrogeologic field data collected during the Spring 2002 groundwater monitoring events. The hydrogeologic data include water level data, estimated hydraulic gradients, interpreted groundwater flow directions, and groundwater potentiometric surface maps for each site.

3.1 SPRING 2002 GROUNDWATER LEVELS

Water level data, available well screen intervals, and screened interval lithologies were obtained during the facility-wide water level measurement round (see Table 3.1).

Groundwater levels were measured at 274 monitoring well and piezometer locations throughout the Iowa AAP facility on June 1 and 2, 2002. Depth to the water table ranged from above the ground surface (artesian) to 19.86 feet below ground surface (bgs). The artesian conditions were observed in four wells, all of which were located adjacent to Brush Creek. Two of those wells (JAW-601 and G-52) are screened in upper bedrock/bedrock. Artesian conditions were also observed in intermediate till well Z1-3, and in well Z1-6, for which the completion interval information is not known. The observance of artesian conditions at these wells is likely related to their placement in a relatively low topographic area adjacent to Brush Creek. At these well locations the land surface elevation is beneath that of the potentiometric surface elevation of the particular water bearing zone into which they are screened. It cannot be ascertained whether the presence of nearby Brush Creek is related to the upper bedrock/bedrock aquifer.

Compared to the Spring 2001 groundwater levels, 179 wells had decreased water levels in Spring 2002. Generally, the decreases were less than two feet. The most significant decrease was observed at well 13-F (bedrock well) where the water level dropped 6.08 feet. This well is located along the southern perimeter boundary area. However, significant increases in water levels also were observed in several basal till/upper bedrock wells, with increases ranging up to 10.95 feet. This largest increase was observed in well T-30, which is located in Line 6.

3.2 GROUNDWATER OCCURRENCE AND HYDRAULIC GRADIENTS

The monitoring wells emplaced into the subsurface underlying the Iowa AAP facility are screened at three main depths: the shallow groundwater or water table (typically found in the shallow glacial till); the intermediate groundwater (intermediate glacial till); and the deep groundwater (basal glacial till, glacial outwash, upper bedrock, and bedrock). Table 3.2 describes the hydrogeologic characteristics of each site and presents the range of depths to groundwater, and horizontal and vertical gradients for the shallow till, intermediate till, and basal till/bedrock. Figures 3.1a through 3.18b present groundwater elevations and interpreted groundwater flow directions at each site. Data for each of these general occurrences of groundwater are summarized below.

U.S. Army Corps of Engineers-Omaha District

P:\lowa AAP\GW Monitoring Report\Report Text\R09-02.877_SP02GWReport.doc	3-1	HydroGeoLogic Inc. 3/19/2003
		· •

An an

3.2.1 Shallow Groundwater/Water Table – Shallow Glacial Till

1.14

1 1.1

The water table typically occurred in the shallow till at each site. Groundwater flow directions in the shallow till generally mimicked site topography, flowing from the upland areas and terraces toward the creeks and their tributaries. Shallow till exhibits low hydraulic conductivity, which restricts horizontal and vertical flow and yields only small quantities of groundwater to wells. Recharge to the shallow till is slow and is derived from infiltration of precipitation and, to some extent, inflow from surface water sources (e.g., washwater from load lines).

3.2.2 Intermediate Groundwater – Intermediate Glacial Till

Water levels and interpreted potentiometric surfaces of the intermediate till were typically a few feet lower than the overlying shallow till. Groundwater occurrences in the intermediate till also were influenced by the site topography, although to a lesser extent than the shallow till groundwater. Flow directions were usually similar to the overlying shallow till groundwater. Because of the similarities in groundwater flow directions, the shallow and intermediate groundwater occurrences were interpreted to have some hydraulic connection, but the differences in potentiometric surface elevations at most sites indicate that the connection is somewhat limited.

3.2.3 Deep Groundwater – Basal Till/Upper Bedrock

Water levels in wells screened at the base of the surficial soils aquifer (i.e., basal glacial till and glacial outwash) and the upper bedrock were typically tens of feet lower than wells screened in the overlying shallow and intermediate glacial till. In most cases, groundwater in the basal till and upper bedrock had very little hydraulic connection with the overlying shallow and intermediate glacial till. Groundwater flow directions in the basal till and glacial outwash typically followed the slope of the underlying upper bedrock. Groundwater in the upper bedrock was found in the weathered and fractured zones located in the upper 20 feet of this unit. Groundwater in the non-weathered bedrock often was found only in open bedding planes and joints. The disparity in water levels measured from wells screened within the bedrock at most sites indicate that these features typically are not laterally extensive, which limits lateral and vertical groundwater flow.

TABLE 3.1
WATER LEVEL MEASUREMENTS SPRING 2002 GROUNDWATER MONITORING EVENT

	Date Measured Spring 02	Well TOC Elevation ¹ (ft. MSL)	Ground Elevation ¹ (ft. MSL)	Well Depth (ft, BTOC)	Depth to Water Spring 01 (ft. BTOC)	Depth to Water Spring 02 (ft: BTOC)	Change in Water Level ² (Spring 01 to Spring 02)	Water Level Elevation Spring 02- (ft. MSL)	Screened Depth (BGS)	Screened Interval	Screened Interval Lithology (USCS)	Well Dia. (in)
Line 1, (IAAP-1) / 1	Line 1 Impour	dment, (IAAP-	16)									
JAW-38	06/01/02	696.52	693.5	13.1	6.03	6.38	-0.35	690.14	5-10	Shallow till	CLw/SC	2
JAW-39	06/01/02	695.22	692.4	15.2	4.07	_ 4.55	-0.48	690.67	7-12	Shallow till	CLw/SP seams	2
JAW-40	06/01/02	695.84	693.0	23.0	3.55	4.36	-0.81	691.48	10-20	Shallow till	CLw/SP seams	2
JAW-41	06/03/02	694.56	691.7	17.9	4.11	5.12	-1.01	689.44	5-15	Shallow till	MLw/CL	2
JAW-42	06/01/02	689.82	686.9	13.0	4.93	5.19	-0.26	684.63	5-10	Shallow till	CHw/SC	2
JAW-43	06/01/02	697. <u>0</u> 2	693.9	20.1	3.41	4.20	0.79	692.82	12-17	Shallow till	SCw/SM	2
JAW-44	06/01/02	698.67	694.9	13.7	4.05	5.42	-1.37	693.25	5-10	Shallow till	ML	2
JAW-45	06/01/02	705.72	703.0	15.7	4.78	6.25	-1.47	699.47	8-13	Shallow till	CL-SC	2
JAW-46	06/01/02	697.11	694.3	12.8	4.40	5.80	-1.40	691.31	5-10	Shallow till	CHw/MH	2
JAW-47	06/01/02	71 <u>1.5</u> 7		20.7	8.26	9.92	-1.66	701.65	13-18	Shallow till	CL-SC	2
JAW-48	06/01/02	704.18	701.5	46.7	7.22	7.04	0.18	697.14	30-44	Intermediate till	CHw/SP seams	_ 2 _
JAW-50	06/01/02	716.85	714.3	24.5	7.17	9.41	-2.24	707.44	12-22	Shallow till	SMw/ML	2
JAW-51	06/01/02	717.89	714.7	22.2	6.31	6.92	-0.61	710.97	<u>9-19</u>	Shallow till	ML	4
JAW-52	06/01/02	720.16	717.4	22.8	9.88	10.94	-1.06	709.22	10-20	Shallow till	<u> </u>	2
JAW-601 (B)	06/01/02	681.41	678.7	69.9	4.34	0.05	4.29	681.36	57-67	Upper bedrock	Weathered Limestone	4
JAW-602 (B)	06/01/02	713.91	711.2	100.2	31.27	24.64	6.63	689.27	87.5-97.5	Up. bed./Glac. outwash	SP&Limestone	4
JAW-603 (B)	06/01/02	717.42	714.8	99.6	36.32	26.00	10.32	691.42	87-97	Upper bedrock	Weathered Limestone	4
SL-81	06/01/02	681.12	679.0	12.9	5.64	5.93	-0.29	675.19	<u>5.5-10.5</u>	Shallow till	<u>NA</u>	2
L1-MW1	06/01/02	719.02	716.5	37.8	11.93	12.68	-0.75	706.34	25-35	Intermediate till	CL-CH	2
<u>Z1-1 (GZ-1)</u>	06/01/02	685.74	682.9	52.8	5.52	5.19	0.33	680.55	40-50	Intermediate till	NA	4
<u>Z1-2 (GZ-2)</u>	06/01/02	673.61	671.2	32.4	NM	NM	NA	NM	20-30	Intermediate till	NA	4
Z1-2A (GZ-2A)	06/01/02	674.06	671.6	12.5	4.09	4.81	0.72	669.25	5-10	Shallow till	NA	4
Z1-3 (GZ-3)	06/01/02	<u>680.76</u>	678.1	48.7	0.72	0.45	0.27	680.31	36_46	Intermediate till	NA	4
Z1-6 (GZ-6)	06/01/02	689.76	<u>686</u> .8	NA	L	<u> </u>	<u>-0.10</u>	689.66	39-49	<u>NA</u>		NA
Line 2, (IAAP-2)								·				
G-15	06/01/02	660.21	655.8	19.5	8.56	9.30	-0.74	650.91	6.5-16.5	Shallow till	SCw/SW	4
12-A	06/01/02	681.25	<u>679.1</u>	22.6	4.81	5.75	-0.94	675.50	10.5-20.5	Shallow till	CLw/ML	2
12-B	06/01/02	691.44	689.2	22.6	5.52	6.12	-0.60	685.32	10.5-20.5	Shallow till	NA	2
12-C	06/01/02	691.66	<u>689.2</u>	52.8	7.79	7.68	0.11	683.98	40.2-50.2	Intermediate till	NA	2
12-D (B)	06/01/02	691.26	689.3	132.0	18.88	18.50	0.38	672.76	110-120	Upper bedrock	Weathered Limestone	2
12-E	06/01/02	690.37	688.5	21.6	7.86	6.90	0.96	683.47	10-20	Shallow till	CL	2
12-F	06/01/02	690.54	688.3	52.8	7.82	7.55	0.27	682.99	40.4-50.4	Intermediate till	CLw/ML	2
12-G	06/01/02	690.00	688.0	22.6	3.45	6.43	-2.98	683.57	10.3-20.3	Shallow till	CLw/SC seams	2
JAW-70	06/01/02	685.22	682.4	37.9	3.16	3.27	0.11	681.95	7-17	Shallow till	ML-SMw/SP	2
JAW-71	06/01/02	684.61	682.3	19.4	4.96	4.72	0.24	679.89	7-17	Shallow till	CLw/SC	2
JAW-72	06/01/02	691.09	688.1	23.0	3.66	4.00	-0.34	687.09	10-20	Shallow till	SPw/SC	_2
JAW-73	06/01/02	692.41	689.7	22.7	4.71	5.48	-0.77	686.93	10-20	Shallow till	CLw/SC	2
JAW-74	06/01/02	693.95	691.4	24.6	8.11	10.16	-2.05	683.79	12-22	Shallow till	CL-SCw/SM	2
JAW-75	06/01/02	691.97	688.8	20.7	3.72	3.70	0.02	688.27	7-17.5	Shallow till	CLw/trace SC	2
L2-MW1	06/01/02	679.57	677.6	37.5	6.54	4.87	1.67	674,70	25-35	Intermediate till	CL-CH	2
L2-MW2	06/01/02	686.68	684.0	20.1	2.89	2.66	0.23	684.02	7.5-17.5	Shallow till	CL-CH	2
L2-MW3	06/01/02	692.32	689.8	27.7	5.67	6.09	-0.42	686.23	15-25	Shallow till	CLw/SC	2
Line 3, (IAAP-3)	00/01/02	092.32	009.0		5.07	0.09	-0.42	000.25				┶┷┥
16-A (B)	06/01/02	696.30	694.3	112.6	14.95	13.52	1.43	682.78	99.4-109.4	Upper bedrock	CLw/SP	2
16-B	06/01/02	701.10	<u> </u>	27.3	2.66	3.08	-0.42	698.02	15.1-25.1	Shallow till	CL CL	2
<u>16-В</u> 16-С	06/01/02	<u>697.69</u>	695.7	27.8	3.81	4.15	-0.42	693.54	15.6-25.6	Shallow till	ML	2
16-D	06/01/02	697.66	695.7 695.8	27.8	2.70	3.11	-0.34	694.55	15-25	Shallow till		2
16-D	06/01/02	697.55	695.7	57.7	6.24	5.95	0.29	691.60	45-55	Intermediate till	CL/MLw/SC seams	2
10-6		<u>696.11</u>	<u> </u>	20.1	3.74	3.88	-0.14	692.23	<u>45-55</u> 8-18	Shallow till	CLw/SC seams	2
JAW-53	06/01/02											

P:\Tows AAP\GW Monitoring Report\Tables\IAAAPSpring2002_gwrp_tbls

.

5

WATER LEVEL MEASUREMENTS SPRING 2002 GROUNDWATER MONITORING EVENT

T-30 (B) O6/01/02 716.14 713.9 151.2 57.43 46.48 10.95 669.66 139-149 Upper bedrock NA 2 T-34 06/01/02 715.05 712.8 23.1 5.70 6.52 -0.82 708.53 10-20 Shallow till NA 4 T-35 06/01/02 716.01 712.6 77.6 23.19 20.05 3.14 695.96 60-70 Intermediate till NA 4		Date Measured Spring 02	Well TOC Elevation ¹ (ft. MSL)	Ground Elevation ¹ (A. MSL)	Well Depth (ft. BTOC)	Depth to Water Spring 01 (ft. BTOC)	Depth to Water Spring 02 (ft. BTOC)	Change in Water Level ² (Spring 01 to Spring 02)	Water Level Elevation Spring 02 (ft. MSL)	Screened Depth (BGS)	Screened Interval	Screened Interval Lithology (USCS)	Well Dia. (in)
JAW-56 O60102 701,21 698,9 22,3 2,74 3,15 0,41 698,06 10,20 Shallow iii CLW/SC serves 2 JAW-57 060102 702,76 700,0 22,2 4,32 5,00 0,48 697,76 10,20 Shallow iii CL/SC S 2 JAW-17 060102 716.83 716,07 122,2 3,75 6.69 -2.34 706,79 5-20 Shallow iii CL/SC C 2 JAW-16 (B) 060102 713,87 711,0 60,1 15,83 398 0.13 707,85 5-15 Shallow iii CL/SC C 2 JAW-16 (B) 060102 711,47 709,2 35,5 44,84 0,26 666,0 35,51 Up bet/Gine output CH/SF A (inscearange) 2 A/W-30 0,00102 716,77 713,2 719 4,29 7,08 2.79 708,69 3,51 Up bet/Gine output CH/SF A (inscearange) 2.64 A/W-30 0,600 3,51 0,53 1													
JAW-37 060/02 705.97 705.9 27.1 4.14 5.44 1.30 700.53 15.25 Shallow iii CH 2 JAW-77 060/02 702.76 700.6 22.2 4.32 5.00 -0.68 697.76 10.20 Shallow iii CL-SC 2 JAW-15 060/02 71.83 707.0 72.2 3.75 6.09 -2.34 706.79 5.20 Shallow iii CL-wCH 2 JAW-16 (b) 060/02 71.18 709.3 17.5 3.85 3.98 -0.13 707.85 5.11 Shallow iii CL-wCH 2 JAW-16 (b) 060/02 71.74 709.2 3.55 4.51.0 4.484 0.26 666.50 35.51 Shallow iii CL-CH 2 JAW-19 060/02 71.84 71.9 2.8 3.44 6.20 2.81 3.41 0.40 79 708.45 2.0 Shallow iii CL-CH 2 JAW-20 060/020											Shallow till	ML-SM	
JAW-77 0e0102 702.76 700.6 22.2 4.32 5.00 0.68 697.76 10-20 Shallow III CL-SC 2 JAW-16 (B) 0e01002 712.88 710.7 722.2 3.75 6.09 -2.34 706.79 5-20 Shallow III CL-SC 2 JAW-16 (B) 0e01002 713.87 711.00 60.1 16.85 3.98 0.13 707.85 51.5 Shallow III CL-WCH 2 JAW-17 0e01002 711.84 702.9 23.5 45.10 44.84 0.26 666.00 155.1 Up bet/Gac, eaveab, CM-WFP & Limeson 2 JAW-19 0e01002 713.82 711.9 42.9 7.08 2.79 708.69 5.51 Shallow III CL-CH 2 JAW-20 (B) 0e01002 713.82 711.4 22.2 6.86 709.86 5.20 Shallow III CL-CH 2 JAW-20 (B) 0e00.02 71.81 719.4 2.2 8.4 4.80 0								-0.41	698.06	10-20	Shallow till	CLw/SC seams	2
Lines A., (LAAP-6) Lines A., (LAAP-6) District of the second sec		06/01/02	705.97		27.1	4.14	5.44	-1.30	700.53	15-25	Shallow till	СН	2
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				700.6	22.2	4.32	5.00	- <u>0.</u> 68	697.76	10-20	Shallow till	CL-SC	2
JAW-16 (9) 0601/02 711.0 60.1 16.38 16.65 0.27 696.42 43.88 Up, bed (illic, outwah) S2 & Weath, Statil 2 JAW-18 (9) 0601/02 711.81 700.3 17.5 3.85 3.98 0.13 707.85 5-15 Statilow till CH-WERC SC 2 JAW-18 (0) 0601/02 711.74 700.2 53.5 45.10 M4.84 0.26 6669.0 35.51 Statilow till CLCH 2 2 JAW-20 (0) 0601/02 711.82 171.9 4.29 708 -2.79 708.69 43.53 Up, bed (illic, outwah) SC & Weath, Statil 4 JAW-20 (0) 0601/02 713.61 71.9 42.8 3.84 4.80 0.96 5.50 Statilow till CLCH 2 2 JAW-20 (0) 071.64 71.78 192.2 4.84 4.81 Statilow till CH 2 JAW-20 Statilow till CH<2			d, (IAAP-41) /]	Line 3A STP,	(IAAP-29)								
JAW-17 060102 711.83 703.3 17.5 3.85 3.96 0.13 707.85 5.15 7.5 Subset 2 JAW-18 (6) 060102 711.74 709.2 53.5 45.10 44.84 0.36 6665 90 45.51 Up. bed./Gisc.outwath CHW/Rec SC 2 JAW-19 060102 713.87 711.9 40.0 25.9 0.88 667 90 43.58 Up. bed./Gisc.outwath CC.LCH 2 JAW-20 (b) 060102 714.66 711.9 22.8 3.84 4.80 -0.96 709.86 5.20 Shallow till ML/SW/SC 2 JAW-20 (b) 060102 711.8 19.2 3.44 6.51 -3.03 713.4 71.7 Shallow till CH * 22 JAW-305 0605020 721.81 71.7 8.33 9.79 -1.26 717.60 3.8 Shallow till CL 2 2 JAW-305 0605020 721.9 721.7 8.33 9.79 -1.26					22.2				706.79	5-20	Shallow till	CLw/CH	2
JAW-18 (p) OSO1/02 711.74 709.2 33.5 4 510 4 4 54 0.26 6669.00 35.51 Up bert/Gir. enveals CHWSP & Lineatore 2 JAW-12 (b) 06001/02 713.52 713.9 4.99 70.8 -279 708.69 51.5 Subtew nill CL-CH 2 JAW-20 (b) 06001/02 713.53 711.9 42.28 3.34 4.80 -0.96 51.5 Subtew nill CL-CH 2 JAW-22 06001/02 713.57 711.4 42.2.2 6.86 10.21 -3.35 703.36 5-20 Subtew nill CH-CH 2 JAW-404 0602/02 721.81 711.8 20.2 2.81 3.41 -0.60 718.40 48.14.8 Subtew nill CL-CH 2 JAW-605 060505/02 721.91 772.47 10.7 8.53 70.9 -12.6 717.60 3.8 Subtew nill NA 4 JAW-605 06002/02 727.91 72.47 <t< td=""><td></td><td></td><td></td><td></td><td>60.1</td><td>16.38</td><td>16.65</td><td>-0.27</td><td>696.42</td><td>43-58</td><td>Up. bed./Glac. outwash</td><td>SC & Weath. Shale</td><td>2</td></t<>					60.1	16.38	16.65	-0.27	696.42	43-58	Up. bed./Glac. outwash	SC & Weath. Shale	2
JAW-19 Ob01/02 715 77 713 22 17.9 4.29 70.8 2.29 708.69 5.15 Statiow till CL-CH 2 JAW-20 0601/02 713.42 711.9 0601 25.04 25.9 0.88 667.90 43.58 Up, bet /Jacc.ouvauk 9C kenth Shale 4 JAW-21 0601/02 714.66 711.9 22.8 3.84 4.80 -0.96 709.86 5.20 Statiow till ML/SMWSC 2 JAW-80 0600202 711.84 22.2 8.86 10.21 -3.35 700.36 5.20 Statiow till CH/WSC 2 JAW-805 0600202 717.81 19.2 3.48 6.51 -3.00 713.49 4.8.14.8 Statiow till CH 2 JAW-805 060202 727.91 724.7 10.7 8.3 9.79 -1.26 717.60 3.4 Statiow till NA 4 Z2-2 060202 727.91 72.17 N1.40 N											Shallow till	CHw/trace SC	2
JAW-20 (B) 9601/02 711.82 711.9 60.0 25.04 25.92 -0.88 687.90 43.58 Up, bed //Tile, curvanh SC & Weath, Stale 4 JAW-21 0601/02 713.57 711.4 22.2 6.86 10.21 -3.35 703.66 5-20 Shallow till ML/SMw/SC 2 JAW-60 0600/02 721.81 719.4 20.2 2.81 3.41 -0.60 718.40 4.8-14.8 Shallow till CHw/SC 2 JAW-604 0600202 721.81 719.4 20.2 2.81 3.41 -0.60 718.40 4.8-14.8 Shallow till CH 2 JAW-604 0600202 721.81 719.7 8.51 7.08 -1.55 719.93 9.19 Shallow till NA 4 Z3-1 0600202 725.91 721.7 10.7 8.53 6.79 -1.26 717.60 3.4 Shallow till NA 4 Z3-4 0600202 725.17 721.7 <td></td> <td></td> <td></td> <td></td> <td>53.5</td> <td>45.10</td> <td></td> <td>0.26</td> <td>666.90</td> <td>36-51</td> <td>Up. bed./Glac. outwash</td> <td>CHw/SP & Limestone</td> <td>2</td>					53.5	45.10		0.26	666.90	36-51	Up. bed./Glac. outwash	CHw/SP & Limestone	2
JAW-21 0601/02 714.66 711.9 22.8 3.84 4.80 0.96 779.86 5.20 Shallow till ML/ShurgC 2 JAW-22 0601/02 713.57 711.4 22.2 6.86 10.21 -3.35 703.36 5-20 Shallow till CH/W/SC 2 JAW-604 060202 721.81 719.4 20.2 2.81 3.41 -0.60 718.40 4.8-14.8 Shallow till CH 2 JAW-605 06050502 727.01 724.7 10.7 8.53 9.79 -1.26 717.60 3.48 Shallow till NA 4 23-2 0600202 725.91 721.7 32.2 NM 11.20 NA 714.71 18.28 Shallow till NA 4 23-5 0600202 725.91 721.7 32.2 NM 11.20 NA 715.40 8.51.85 Shallow till NA 4 23-5 0600202 726.81 722.8 72.17				713.2	17.9		7.08	-2.79	708.69	5-15	Shallow till	CL-CH	2
JAW-22 0601/02 713.57 711.4 22.2 6.86 10.21 3.35 703.36 5.20 Shallow tilt CHw/SC 2 JAW-604 0602/02 721.81 719.4 20.2 2.81 3.41 -0.60 718.40 4.8.14.8 Shallow tilt CH // 2 JAW-605 0605/02 719.99 717.8 19.2 3.48 6.51 -3.00 713.46 7.17 Shallow tilt CL 2 JAW-606 0602/02 727.01 724.3 21.8 5.53 7.08 -1.55 719.93 9.19 Shallow tilt NA 44 23-2 0602/02 725.91 721.7 32.2 NM 11.20 NA 714.07 3.8 Shallow tilt NA 4 23-4 0602/02 725.52 722.9 22.1 6.17 11.12 4.95 715.40 8.5-18.5 Shallow tilt NA 4 23-4 06001/02 726.14 723.8 72.01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-0.88</td><td>687.90</td><td>43-58</td><td>Up. bed./Glac. outwash</td><td>SC & Weath. Shale</td><td>4</td></t<>								-0.88	687.90	43-58	Up. bed./Glac. outwash	SC & Weath. Shale	4
Line 4A and 4B, (1AP-5) Difference Difference <thdifference< th=""> Differenc</thdifference<>		06/01/02	714.66	711.9	22.8	3.84	4.80	-0.96	709.86	5-20	Shallow till	ML-SMw/SC	2
			713.57	<u>71</u> 1.4	22.2	6.86	10.21	-3.35	703.36	5-20	Shallow till	CHw/SC	2
JAW-605 06/05/02 710.99 717.8 19.2 3.48 6.51 -3.03 713.48 7.17 Shallow till CL 2 23-1 06/02/02 727.01 724.3 21.8 5.53 7.06 -1.55 719.93 9-19 Shallow till NA 4 23-2 06/02/02 727.39 724.7 10.7 8.53 9.79 -1.26 717.60 3.8 Shallow till NA 4 23-5 06/02/02 725.91 721.7 32.2 NM 11.20 NA 716.71 18-28 Shallow till NA 4 23-5 06/02/02 725.91 721.7 32.2 NM 11.20 NA 716.71 Islatow till NA 4 23-5 06/01/02 726.47 72.18 73.98 -0.61 722.16 7.5.17 Shallow till CL-CH 2 25B-MW1 06/01/02 729.65 727.1 20.5 5.40 7.58 72.18		AP-5)											
23-1 9602/02 727.01 724.3 21.8 5.53 7.08 -1.55 719.93 9-19 Shallow till NA 4 23-2 06/02/02 727.39 724.7 10.7 8.53 9.79 -1.26 717.60 3.8 Shallow till NA 4 23-4 06/02/02 725.91 721.7 32.2 NM 11.20 NA 714.71 18.28 Shallow till NA 4 23-4 06/02/02 725.91 721.7 32.2 NM 11.20 NA 714.71 18.28 Shallow till NA 4 Lie 5A and 5B, (TAAP-6)		06/02/02	721.81	719.4	20.2	2.81	3.41	0.60	718.40	4.8-14.8	Shallow till	СН	2
Z3-2 06/02/02 727.39 724.7 10.7 8.53 9.79 -1.26 717.60 3.8 Shallow till NA 4 Z3-4 06/02/02 725.91 721.7 32.2 NM 11.20 NA 714.71 18.28 Shallow till NA 4 Z3-5 06/02/02 726.52 722.9 22.1 6.17 11.12 4.95 715.40 8.5-18.5 Shallow till NA 4 Line 5A and 5B, (IAAP-6)		06/05/02	719.99	717.8	19.2	3.48	6.51	-3.03	713.48	7-17	Shallow till	CL	2
Z24 06/02/02 725.91 721.7 32.2 NM 11.20 NA 714.71 18-28 Shallow till NA 4 Z3-5 06/02/02 726.52 722.9 22.1 6.17 11.12 4.95 715.40 8.5-18.5 Shallow till NA 4 Z3-5 06/02/02 726.14 723.8 20.0 3.37 3.98 -0.61 722.16 7.5-17 Shallow till CL-CH 2 Sh-MW2 06/01/02 726.63 724.7 20.1 3.84 4.31 -0.47 722.52 7.5-17 Shallow till CL-CH 2 Sh-MW2 06/01/02 729.02 726.7 2.2.9 3.59 5.90 -2.31 723.12 10-19.5 Shallow till CL-CH 2 JAW-607 06/01/02 730.11 727.8 17.9 3.03 6.18 -3.15 723.93 6.5-15.5 Shallow till CL-CH 2 JAW-607 06/01/02 722.19 720.1 14.1<					21.8			-1.55	719.93	9-19	Shallow till	NA	4
Z3.5 06/02/02 726.52 722.9 22.1 6.17 11.12 4.95 715.40 8.5-18.5 Shallow till NA 4 Line 5A and 5B, (IAAP-6)		06/02/02	727.39	724.7	10.7	8.53	9.79_	-1.26_	717.60	3-8	Shallow till	NA	4
Line 5A and 5B, (IAAP-6) Charles Construction Constr	Z3-4	06/02/02	725.91	721.7	32.2	NM	11.20	NA	714.71	18-28	Shallow till	NA	4
SA-MW1 06/01/02 726.14 723.8 20.0 3.37 3.98 -0.61 722.16 7.5-17 Shallow till CL-CH 2 SA-MW2 06/01/02 726.83 724.7 20.1 3.84 4.31 -0.47 722.52 7.5-17 Shallow till CL-CH 2 SB-MW1 06/01/02 726.65 727.1 20.5 5.40 7.58 -2.18 723.07 7.5-17 Shallow till CL-CH 2 SB-MV3 06/01/02 729.02 726.7 22.9 3.59 5.90 -2.31 723.12 10-19.5 Shallow till CL-CH 2 JAW-606 06/01/02 729.02 726.7 21.9 3.03 6.18 -3.15 723.93 6.5-15.5 Shallow till CL-CH 2 JAW-608 06/01/02 729.84 727.7 21.1 5.11 7.36 -2.25 722.48 9-19 Shallow till CL-CH 2 JAW-608 (B) 06/01/02 725.51	Z <u>3-5</u>	06/02/02	726.52	722.9	22.1	6.17	11.12	-4.95	715.40	8.5-18.5	Shallow till	NA	4
SA-MW2 06/01/02 726.83 724.7 20.1 3.84 4.31 -0.47 722.52 7.5-17 Shallow till CHw/SC 2 SB-MW2 06/01/02 729.65 727.1 20.5 5.40 7.58 -2.18 722.07 7.5-17 Shallow till CL-CH 2 SB-MW2 06/01/02 729.02 726.7 22.9 3.59 5.90 -2.31 723.12 10-19.5 Shallow till CL-CH 2 JAW-606 06/01/02 722.92 720.3 17.0 2.84 5.50 2.66 716.79 5-15 Shallow till CL-CH 2 JAW-607 06/01/02 730.11 727.8 17.9 3.03 6.18 -3.15 723.93 6.515.5 Shallow till CL-W/SC 2 JAW-609 (B) 06/01/02 722.11 511 7.36 -2.25 722.48 9-19 Shallow till CL-W/SC 2 JAW-609 (B) 06/01/02 725.51 722.2 58.0 <td>Line 5A and 5B, (IA</td> <td>AP-6)</td> <td></td>	Line 5A and 5B, (IA	AP-6)											
SB-MW1 06/01/02 729.65 727.1 20.5 5.40 7.58 -2.18 722.07 7.5-17 Shallow till CL-CH 2 SB-MW2 06/01/02 729.02 726.7 22.9 3.59 5.90 -2.31 723.12 10-19.5 Shallow till CL-CH 2 JAW-606 06/01/02 722.29 720.3 17.0 2.84 5.50 -2.66 716.79 5-15 Shallow till CL-CH 2 JAW-607 06/01/02 730.11 727.8 17.9 3.03 6.18 -3.15 723.93 6.5-15.5 Shallow till CL-CH 2 JAW-608 06/01/02 722.19 720.1 114.1 50.28 36.09 14.19 686.10 102-112 Upper bedrock Weathered Limestone 4 Line 6, (AAP-7)		06/01/02	726.14	723.8	20.0	3.37	3.98	-0.61	722.16	7.5-17	Shallow till		
SB-MW2 06/01/02 729.02 726.7 22.9 3.59 5.90 -2.31 723.12 10-19.5 Shallow till CL-CHw/SC 2 JAW-606 06/01/02 722.29 720.3 17.0 2.84 5.50 -2.66 716.79 5-15 Shallow till CL-CHw/SC 2 JAW-607 06/01/02 720.3 17.9 3.03 6.18 -3.15 723.93 6.5-15.5 Shallow till CL-CH 2 JAW-608 06/01/02 729.84 727.7 21.1 5.11 7.36 -2.25 722.48 9-19 Shallow till CL-W/SC 2 JAW-609 (B) 06/01/02 722.19 720.1 114.1 50.28 36.09 14.19 686.10 102-112 Upper bedrock Weathered Limestone 4 Line 6, (AAP-7)	5A-MW2	06/01/02	726.83	_ 724.7	20.1	3.84	4.31	0.47	722.52	7.5-17	Shallow till	CHw/SC	_2
JAW-606 06/01/02 722.29 720.3 17.0 2.84 5.50 -2.66 716.79 5-15 Shallow till CL-CH 2 JAW-607 06/01/02 730.11 727.8 17.9 3.03 6.18 -3.15 723.93 6.5-15.5 Shallow till CL 2 JAW-608 06/01/02 729.84 727.7 21.1 5.11 7.36 -2.25 722.48 9-19 Shallow till CL.w/SC 2 JAW-609 (B) 06/01/02 725.17 722.1 58.0 12.95 13.60 NA 711.91 44-54 Intermediate till NA 4 G22-1 06/01/02 725.51 722.2 58.0 12.95 13.60 NA 711.91 44-54 Intermediate till NA 4 T-10 06/01/02 725.46 722.6 76.3 41.65 32.33 9.32 692.13 60-70 Intermediate till NA 4 T-12(B) 06/01/02 717.81										7.5-17	Shallow till		
JAW-607 06/01/02 730.11 727.8 17.9 3.03 6.18 -3.15 723.93 6.5-15.5 Shallow till CL 2 JAW-608 06/01/02 729.84 727.7 21.1 5.11 7.36 -2.25 722.48 9-19 Shallow till CLw/SC 2 JAW-609 (B) 06/01/02 722.19 70.1 114.1 50.28 36.09 14.19 686.10 102-112 Upper bedrock Weathered Limestone 4 Line 6, (IAAP-7) 722.19 722.8 27.9 3.95 5.66 -1.71 719.36 1424.5 Shallow till NA 4 T-10 06/01/02 725.02 722.8 27.9 3.95 5.66 -1.71 719.36 1424.5 Shallow till NA 4 T-11 06/01/02 724.46 732.6 76.3 41.65 32.33 9.32 692.13 60.70 Intermediate till NA 4 T-12 (B) 06/01/02 717.81 <t< td=""><td></td><td>06/01/02</td><td>729.02</td><td></td><td>22.9</td><td>3.59</td><td></td><td>-2.31</td><td>723.12</td><td>10-19.5</td><td>Shallow till</td><td></td><td></td></t<>		06/01/02	729.02		22.9	3.59		-2.31	723.12	10-19.5	Shallow till		
JAW-608 06/01/02 729.84 727.7 21.1 5.11 7.36 -2.25 722.48 9-19 Shallow till CLw/SC 2 JAW-609 (B) 06/01/02 722.19 720.1 114.1 50.28 36.09 14.19 686.10 102-112 Upper bedrock Weathered Limestone 4 Line 6, (LAAP-7)							5.50	-2.66		5-15	Shallow till		
IAW-609 (B) 06/01/02 722.19 720.1 114.1 50.28 36.09 14.19 686.10 102-112 Upper bedrock Weathered Limestone 4 Line 6, (LAAP-7) </td <td></td> <td></td> <td>730.11</td> <td>727.8</td> <td>17.9</td> <td>3.03</td> <td></td> <td>-3.15</td> <td>723.93</td> <td>6.5-15.5</td> <td>Shallow till</td> <td></td> <td></td>			730.11	727.8	17.9	3.03		-3.15	723.93	6.5-15.5	Shallow till		
Line 6, (IAAP-7) GZ2-1 06/01/02 725.51 722.2 58.0 12.95 13.60 NA 711.91 44-54 Intermediate till NA 4 T-10 06/01/02 725.02 722.8 27.9 3.95 5.66 -1.71 719.36 14-24.5 Shallow till NA 4 T-11 06/01/02 724.46 722.6 76.3 41.65 32.33 9.32 692.13 60-70 Intermediate till NA 4 T-12 (B) 06/01/02 725.12 723.1 123.1 53.56 47.88 NA 677.24 111-121 Upper bedrock NA 2 T-16 06/01/02 717.81 715.7 22.5 2.60 4.92 -2.32 712.89 10-20 Shallow till NA 4 T-17 06/01/02 717.84 715.9 75.6 22.37 18.90 3.47 698.94 60-70 Intermediate till NA 4 T-18 (B) 06/01/02 <	JAW-608	06/01/02		727.7	21.1					9-19	Shallow till	CLw/SC	2
GZ2-1 06/01/02 725.51 722.2 58.0 12.95 13.60 NA 711.91 44-54 Intermediate till NA 4 T-10 06/01/02 725.02 722.8 27.9 3.95 5.66 -1.71 719.36 14-24.5 Shallow till NA 4 T-11 06/01/02 724.46 722.6 76.3 41.65 32.33 9.32 692.13 60-70 Intermediate till NA 4 T-12 (B) 06/01/02 725.12 723.1 123.1 53.56 47.88 NA 677.24 111-121 Upper bedrock NA 2 T-16 06/01/02 717.81 715.7 22.5 2.60 4.92 -2.32 712.89 10-0 Shallow till NA 4 T-17 06/01/02 717.84 715.6 117.0 38.63 34.85 3.78 682.69 100-115 Upper bedrock NA 2 T-28 06/01/02 715.77 713.7 23.0 NM 5.54 NA 710.23 10-20 Shallow till <td< td=""><td>JAW-609 (B)</td><td>06/01/02</td><td>722.19</td><td>720.1</td><td>114.1</td><td>50.28</td><td>36.09</td><td>14.19</td><td>686.10</td><td>102-112</td><td>Upper bedrock</td><td>Weathered Limestone</td><td>4</td></td<>	JAW-609 (B)	06/01/02	722.19	720.1	114.1	50.28	36.09	14.19	686.10	102-112	Upper bedrock	Weathered Limestone	4
T-10 06/01/02 725.02 722.8 27.9 3.95 5.66 -1.71 719.36 14-24.5 Shallow till NA 4 T-11 06/01/02 724.46 722.6 76.3 41.65 32.33 9.32 692.13 60-70 Intermediate till NA 4 T-12 (B) 06/01/02 725.12 723.1 123.1 53.56 47.88 NA 677.24 111-121 Upper bedrock NA 2 T-16 06/01/02 717.81 715.7 22.5 2.60 4.92 -2.32 712.89 10-20 Shallow till NA 4 T-17 06/01/02 717.84 715.9 75.6 22.37 18.90 3.47 698.94 60-70 Intermediate till NA 4 T-18 (B) 06/01/02 715.77 713.7 23.0 NM 5.54 NA 710.23 10-20 Shallow till NA 2 T-28 06/01/02 715.77 713.7 23.10 NM 5.54 NA 710.23 10-20 Shallow till NA	Line 6, (IAAP-7)												
T-11 06/01/02 724.46 722.6 76.3 41.65 32.33 9.32 692.13 60-70 Intermediate till NA 4 T-12 (B) 06/01/02 725.12 723.1 123.1 53.56 47.88 NA 677.24 111-121 Upper bedrock NA 2 T-16 06/01/02 717.81 715.7 22.5 2.60 4.92 -2.32 712.89 10-20 Shallow till NA 4 T-17 06/01/02 717.84 715.9 75.6 22.37 18.90 3.47 698.94 60-70 Intermediate till NA 4 T-18 (B) 06/01/02 717.54 715.6 117.0 38.63 34.85 3.78 682.69 100-115 Upper bedrock NA 2 T-28 06/01/02 715.77 713.7 23.10 19.58 3.52 696.21 60-70 Intermediate till NA 4 T-30 (B) 06/01/02 716.14 713.9 <t< td=""><td>GZ2-1</td><td>_06/01/02_</td><td>725.51</td><td>722.2</td><td>58.0</td><td>12.95</td><td>_13.60</td><td></td><td>711.91</td><td>44-54</td><td>Intermediate till</td><td>NA</td><td></td></t<>	GZ2-1	_06/01/02_	725.51	722.2	58.0	12.95	_13.60		711.91	44-54	Intermediate till	NA	
T-12 (B) 06/01/02 725.12 723.1 123.1 53.56 47.88 NA 677.24 111-121 Upper bedrock NA 2 T-16 06/01/02 717.81 715.7 22.5 2.60 4.92 -2.32 712.89 10-20 Shallow till NA 4 T-17 06/01/02 717.84 715.9 75.6 22.37 18.90 3.47 698.94 60-70 Intermediate till NA 4 T-18 (B) 06/01/02 717.54 715.6 117.0 38.63 34.85 3.78 682.69 100-115 Upper bedrock NA 2 T-28 06/01/02 715.77 713.7 23.00 NM 5.54 NA 710.23 10-20 Shallow till NA 4 T-30 (B) 06/01/02 715.77 713.7 77.0 23.10 19.58 3.52 696.21 60-70 Intermediate till NA 4 T-30 (B) 06/01/02 716.14 713.9 151.2 57.43 46.48 10.95 669.66 139-149 Upper bed	T-10	06/01/02	725.02	722.8	27.9	3.95	5.66	-1.71	719.36	14-24.5	Shallow till	NA	4
T-16 06/01/02 717.81 715.7 22.5 2.60 4.92 -2.32 712.89 10-20 Shallow till NA 4 T-17 06/01/02 717.84 715.9 75.6 22.37 18.90 3.47 698.94 60-70 Intermediate till NA 4 T-18 (B) 06/01/02 717.54 715.6 117.0 38.63 34.85 3.78 682.69 100-115 Upper bedrock NA 2 T-28 06/01/02 715.77 713.7 23.0 NM 5.54 NA 710.23 10-20 Shallow till NA 4 T-29 06/01/02 715.77 713.7 77.0 23.10 19.58 3.52 696.21 60-70 Intermediate till NA 4 T-30 06/01/02 715.05 712.8 23.1 5.70 6.52 -0.82 708.53 10-20 Shallow till NA 4 T-34 06/01/02 716.01 712.													_
T-17 06/01/02 717.84 715.9 75.6 22.37 18.90 3.47 698.94 60-70 Intermediate till NA 4 T-18 (B) 06/01/02 717.54 715.6 117.0 38.63 34.85 3.78 682.69 100-115 Upper bedrock NA 2 T-28 06/01/02 715.77 713.7 23.0 NM 5.54 NA 710.23 10-20 Shallow till NA 4 T-29 06/01/02 715.79 713.7 77.0 23.10 19.58 3.52 696.21 60-70 Intermediate till NA 4 T-30 (B) 06/01/02 716.14 713.9 151.2 57.43 46.48 10.95 669.66 139-149 Upper bedrock NA 4 T-34 06/01/02 716.01 712.8 23.1 5.70 6.52 -0.82 708.53 10-20 Shallow till NA 4 T-35 06/01/02 716.01 712.6 77.6 23.19 20.05 3.14 695.96 60-70 Intermediate till </td <td>T-12 (B)</td> <td>06/01/02</td> <td>725.12</td> <td>723.1</td> <td>123.1</td> <td>53.56</td> <td></td> <td></td> <td></td> <td></td> <td>Upper bedrock</td> <td></td> <td></td>	T-12 (B)	06/01/02	725.12	723.1	123.1	53.56					Upper bedrock		
T-18 (B) 06/01/02 717.54 715.6 117.0 38.63 34.85 3.78 682.69 100-115 Upper bedrock NA 2 T-28 06/01/02 715.77 713.7 23.0 NM 5.54 NA 710.23 10-20 Shallow till NA 4 T-29 06/01/02 715.79 713.7 77.0 23.10 19.58 3.52 696.21 60-70 Intermediate till NA 4 T-30 (B) 06/01/02 716.14 713.9 151.2 57.43 46.48 10.95 669.66 139-149 Upper bedrock NA 2 T-34 06/01/02 715.05 712.8 23.1 5.70 6.52 -0.82 708.53 10-20 Shallow till NA 4 T-35 06/01/02 716.01 712.6 77.6 23.19 20.05 3.14 695.96 60-70 Intermediate till NA 4 T-36 (B) 06/01/02 714.95 712.5 161.9 63.75 61.09 2.66 653.86 149.5-159.5 Upper be		06/01/02	717.81	715.7	22.5			-2.32	712.89		Shallow till		
T-28 06/01/02 715.77 713.7 23.0 NM 5.54 NA 710.23 10-20 Shallow till NA 4 T-29 06/01/02 715.79 713.7 77.0 23.10 19.58 3.52 696.21 60-70 Intermediate till NA 4 T-30 (B) 06/01/02 716.14 713.9 151.2 57.43 46.48 10.95 669.66 139-149 Upper bedrock NA 2 T-34 06/01/02 715.05 712.8 23.1 5.70 6.52 -0.82 708.53 10-20 Shallow till NA 4 T-35 06/01/02 716.01 712.6 77.6 23.19 20.05 3.14 695.96 60-70 Intermediate till NA 4 T-36 (B) 06/01/02 714.95 712.5 161.9 63.75 61.09 2.66 653.86 149.5-159.5 Upper bedrock NA 2		06/01/02	717.84	715.9	75.6		18.90	3.47	698.94	60-70	Intermediate till		
T-29 06/01/02 715.79 713.7 77.0 23.10 19.58 3.52 696.21 60-70 Intermediate till NA 4 T-30 (B) 06/01/02 716.14 713.9 151.2 57.43 46.48 10.95 669.66 139-149 Upper bedrock NA 2 T-34 06/01/02 715.05 712.8 23.1 5.70 6.52 -0.82 708.53 10-20 Shallow till NA 4 T-35 06/01/02 716.01 712.6 77.6 23.19 20.05 3.14 695.96 60-70 Intermediate till NA 4 T-36 (B) 06/01/02 714.95 712.5 161.9 63.75 61.09 2.66 653.86 149.5-159.5 Upper bedrock NA 2		06/01/02			117.0	38.63	34.85	3.78	682.69	100-115	Upper bedrock		
T-30 (B) 06/01/02 716.14 713.9 151.2 57.43 46.48 10.95 669.66 139-149 Upper bedrock NA 2 T-34 06/01/02 715.05 712.8 23.1 5.70 6.52 -0.82 708.53 10-20 Shallow till NA 4 T-35 06/01/02 716.01 712.6 77.6 23.19 20.05 3.14 695.96 60-70 Intermediate till NA 4 T-36 (B) 06/01/02 714.95 712.5 161.9 63.75 61.09 2.66 653.86 149.5-159.5 Upper bedrock NA 2	T-28	06/01/02	715.77	713.7	23.0	NM_	5.54		710.23		Shallow till		_
T-34 06/01/02 715.05 712.8 23.1 5.70 6.52 -0.82 708.53 10-20 Shallow till NA 4 T-35 06/01/02 716.01 712.6 77.6 23.19 20.05 3.14 695.96 60-70 Intermediate till NA 4 T-36 (B) 06/01/02 714.95 712.5 161.9 63.75 61.09 2.66 653.86 149.5-159.5 Upper bedrock NA 2		06/01/02	715.79	713.7	77.0		19.58	3.52	696.21	60-70	Intermediate till		4
T-35 06/01/02 716.01 712.6 77.6 23.19 20.05 3.14 695.96 60-70 Intermediate till NA 4 T-36 (B) 06/01/02 714.95 712.5 161.9 63.75 61.09 2.66 653.86 149.5-159.5 Upper bedrock NA 2	T-30 (B)	06/01/02	716.14	713.9	151.2	57.43	46.48		669.66				2
T-36 (B) 06/01/02 714.95 712.5 161.9 63.75 61.09 2.66 653.86 149.5-159.5 Upper bedrock NA 2	T-34	06/01/02	715.05	712.8	23.1	5.70	6.52		708.53	10-20	Shallow till		_
	T-35	06/01/02	716.01	712.6	77.6	23.19	20.05		695.96	60-70	Intermediate till		
Line 7, (IAAP-8) There are no wells at this site.	T-36 (B)	_06/01/02_	714.95	712.5	161.9	63.75	61.09	2.66	653.86	149.5-159.5	Upper bedrock	<u>NA</u>	2
	Line 7, (IAAP-8) TI	ere are no we	us at this site.										
Line 8, (IAAP-9) There are no wells at this site.	Line 8, (IAAP-9) TI	ere are no we	ells at this site.										

TA	BL	Æ	3	.1	
----	----	---	---	----	--

WATER LEVEL MEASUREMENTS SPRING 2002 GROUNDWATER MONITORING EVENT

	Date Measured Spring 02	Well TOC Elevation ¹ (ft. MSL)	Ground Elevation ¹ (ft. MSL)	Well Depth (ft. BTOC)	Depth to Water Spring 01 (ft. BTOC)	Depth to Water Spring 02 (ft. BTOC)	Change in Water Level ⁴ (Spring 01, to Spring 02)	Water Level Elevation Spring 02 (ft. MSL)	Screened Depth (BGS)	Screened Interval	Screened Interval Lithology (USCS)	Well Dia. (in)
Line 9, (IAAP-10)	1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	Non Destantion of the	And the second second second	SUPERIO 4.5	29 <u>0</u>						Sector Construction of Construction	1.59 - 1889
JAW-29	06/01/02	713.93	711.2	21.8	3.67	5.41	-1.74	708.52	9-19	Shallow till	ML-SM	2
JAW-30	06/01/02	714.15	711.4	21.8	4.50	6.20	-1.70	707.95	<u>9-19</u> 9-19	Shallow till	CL-SCw/SM	2
JAW-31	06/01/02	713.47	711.4	21.8	3.91	5.75	-1.84	707.72	9-19	Shallow till	CLw/SC	2
JAW-610	06/01/02	712.78	710.1	20.6	2.52	3.88	-1.36	708.90	8-18	Shallow till	CLW/SC	2
JAW-611	06/01/02	713.01	710.1	18.7	3.58	4.85	-1.30	708.16	6.5-16.5	Shallow till	CLw/SC	$\frac{2}{2}$
JAW-612	06/01/02	709.06	708.0	17.6	3.85	4.70				Shallow till	SC SC	2
R10-PZ-02							-0.85	704.36	6.5-16.5			
	06/01/02	706.50	7 <u>05</u> .4	20.1	1.98	2.55	-0.57	703.95	9-19	Shallow till	CLw/SC	
Line 800, (IAAP-11					<u> </u>					<u> </u>		
G-17	06/02/02	684.21	681.2	22.0	5.23	6.17	-0.94	678.04	9-19	Shallow till	CLw/trace SC	4
G-18	06/02/02	682.79	680.1	21.4	3.10	3.85	-0.75	678.94	9-19	Shallow till	CHw/CL-SC	4
G-19	06/02/02	683.40	680.3	22.6	4.33	4.77	-0.44	678.63	9.5-19.5	Shallow till	CHw/SP seams	4
G-20	06/02/02	685.78	683.4	21.1	6.07	7.24	-1.17	678.54	9.5-19.5	Shallow till	CLw/SP seams	4
G-40 (B)	06/02/02	684.08	682.3	85.6	32.45	29.07	3.38	655.01	73.3-83.3	Bedrock	Limestone	4
G-41	06/02/02	684.23	682.5	22.4	2.02	2.19	-0.17	682.04	9.8-19.8	Shallow till	CLw/trace SC	4
G-42 (B)	06/02/02	685.27	683.1	78.6	22.08	21.83	_0.25	663.44	<u>66.5-</u> 76.5	Upper bedrock	Limestone&Shale	4
G-43	06/02/02	685.60	683.3	44.4	14.95	14.24	0.71	671.36	32.1-42.1	Intermediate till	SPw/SC	4
G-44 (B)	06/02/02	682.02	679.7	80.3	17.72	17.51	0.21	664.51	68-78	Upper bedrock	Shale	4
G-45	06/02/02	681.38	679.7	42.4	6.09	6.41	-0.32	674.97	30-40	Intermediate till	SCw/SP	4
G-46 (B)	06/02/02	680.44	678.4	70.0	8.48	8.95	-0.47	671.49	58-68	Bedrock	Limestone	4
G-47	06/02/02	680.59	678.5	28.1	4.68	5.03	-0.35	675.56	16-26	Intermediate till	CLw/SP	4
G-48	06/02/02	683.11	681.9	31.6		_3.80	-0.46	679.31	20.4-30.4	Intermediate till	SCw/SP	4
G-56	06/02/02	681.90	679.9	30.7	3.99	4.30	-0.31	677.60	18.5-28.5	Intermediate till	SM	4
G-57	06/02/02	682.44	680.3	31.9	3.32	3.99		678.45	20-30	Intermediate till	SMw/SP	4
G-58	06/02/02	683.38	680.2	33.5	4.11	5.00	-0.89	678.38	20.1-30.1	Intermediate till	ML-SM	4
JAW-78 (B)	06/02/02	677.71	674.8	68.2	7.22	7.19	0.03	670.52	50-65	Upper bedrock	Limestone&Shale	2
JAW-79	06/02/02	677.74	674.8	38.5	4.98	5.25	-0.27	672.49	25-30	Intermediate till	SCw/SP	2
800-MW-1	06/02/02	684.71	682.6	23.2	5.65	6.09	0.44	678.62	9.9-19.9	Shallow till	SC	2
800-MW-2 (B)	06/02/02	682.72	680.9	78.4	10.86	10.27	0.59	672.45	66-76	Upper bedrock	Limestone&Shale	2
800-MW-3 (B)	_06/02/02_	682.63	<u>680.9</u>	81.5	24.03	23.82	0.21	658.81	<u>69-79</u>	Upper bedrock	Fract. Limestone&Shale	
800-MW-4 (B)	06/02/02	685.92	<u>683</u> .8	76.4	17.83	<u>17.79</u>	0.04	668.13	64-74	Upper bedrock	Limestone&Shale	2
800-MW-5	06/02/02	678.80	677.5	20.7	6.94	2.49	4.45	676.31	7.5-17.5	Shallow tili	CLw/trace SC	2
800-MW-6	06/02/02	681.54	679.3	20.6	7.93	5.35	2.58	676.19	7.5-17.5	Shallow till	CL-SC	2
800-MW-7	06/02/02	682.64	681.1	39.8	4.82	5.46		677.18	27.5-37.5	Intermediate till	SMwML	2
800-MW-8	06/02/02	685.38	683.3	20.2	4.84	4.83	0.01	680.55	7.5-17.5	Shallow till	CLw/trace SC	2
800-MW-9	06/02/02	685.59	683.9	20.1	7.35	6.82	0.53	<u> </u>	7.5-17.5	Shallow till		2
800-MW-10	06/02/02	681.25	679.2	20.4	3.95	3. <u>8</u> 7	0.08	677.38	7.5-17.5	Shallow till	CLw/trace SC	2
800-MW-11 (B)	06/02/02	681.33	679.2	78.6	18.87	18.07	0.80	663.26	66.2-76.2	Upper bedrock	Fract. Limestone&Shale	
800-MW-12	06/02/02	687.37	685.5	20.6	4.52	5.23		682.14	7.5-17.5	Shallow_till	SM	2
800-MW-13	06/02/02	686.06	684.0	20.6	4.69	5.47	-0.78	680.59	7. <u>5-17.</u> 5	Shallow till	<u>SM</u>	2
800-MW-14	06/02/02	685.72	683.6	37.8	6.18	7.13	-0.95	678.59	25-35	Intermediate till	MLw/SM	2
800-MW-15	06/02/02	682.14	680.2	20.7	6.67	7.15	0.48	674.99	7.5-17.5	Shallow till	CL & SM	2
800-MW-16 (B)	06/02/02	679.59	677.5	73.1	15.76	5.36	10.40	674.23	60.5-70.5	Upper bedrock	Fract. Limestone&Shale	
800-MW-17	06/02/02	679.55	677.7		2.50	2.84	-0.34	676.71	24.5-34.5	Intermediate till	CLw/trace SM	2
800-MW-18	06/02/02	681.86	679.5	_20.7	4.08	4.20	-0.12	677.66	7.5-17.5	Shallow till	CLw/trace SP	2
800-MW-19 (B)	06/02/02	680.67	678.4	76.8	16.20	15.90	0.30	664.77	64-74	Upper bedrock	Weath. Limestone&Shale	
800-MW-20	06/02/02	678.81	676.7	20.7	5.63	5.76	-0.13	673.05	7.5-17.5	Shallow till	CL	2
800-MW-21 (B)	06/02/02	682.17	680.1	80.2	19.12	18.88	0.24	663.29	67-77	Upper bedrock	Fract. Limestone&Shale	
800-MW-22 (B)	06/02/02	682.34	679.6	67.2	5.35	5.62	-0.27	676.72	54-64	Upper_bedrock	Limestone	2
800-MW-23 (B)	06/02/02	684.73	682.2	67.0	7.16	8.74	-1.58	675.99	54-64	Upper bedrock	Limestone w/Shale	2
800-MW-24 (B)	06/02/02	680.54	678.0	79.6	16.36	16.12	0.24	664.42	67-77	Upper bedrock	Limestone	2

Sheet 3 of 7

TABLE 3.1							
WATER LEVEL MEASUREMENTS SPRING 2002 GROUNDWATER MONITORING EVENT							

	Date Measured Spring 02	Well TOC Elevation ¹ (ft. MSL)	Ground Elevation ¹ (ft. MSL)	Well Depth (ft. BTOC)	Depth to Water Spring 01 (ft. BTOC)	Depth to Water Spring 02. (ft. BTOC)	Change in Water. Level ³ (Spring 01 to Spring 02)	Water Level Elevation Spring 02 (R. MSL)	Screened Depth (BGS)	Screened Interval	Screened Interval Lithology (USCS)	Well Dia. (in)
Line 800, (IAAP-11) / Pink Water	Lagoon, (IAA)	P-44), cont.	- 19 C	A CONTRACTOR OF THE OWNER OF							
800-MW-25	06/02/02	681.96	679.9	20.1	2.21	2.45	-0.24	679.51	7.5-17.5	Shallow till	CL-CHw/SC	2
800-MW-26	06/02/02	682.53	679.9	19.9	4.36	4.63	-0.27	677.90	7-17	Shallow till	CL-CHw/SC	2
East Burn Pads, (IAAP-12)												
EDA-01	06/01/02	695.37	692.5	28.7	3.94	5.33	-1.39	690.04	16-25.8	Shallow till	NA	4
EDA-02 (B)	06/01/02	673.22	671.6	29.4	15.29	17.11	-1.82	656.11	12-27	Upper bedrock	Weathered Limestone	4
EDA-03 (B)	06/01/02	676.59	674.3	41.5	17.95	19.05	-1.10	657.54	28-37.6	Upper bedrock	Limestone&Shale	4
EDA-04	06/01/02	685.20	683.4	21.8	4.77	5.72	-0.95	679.48	9.4-18.4	Shallow till	NA	4
G-29	06/01/02	684.33	681.9	20.6	4.21	5.10	-0.89	679.23	8-18	Shallow till	NA NA	4
JAW-04 (B)	06/01/02	661.00	658.0	26.0	10.42	11.81	-1.39	<u>649</u> .19	13-23	Upper bedrock	Weathered Limestone	4
JAW-05	06/01/02	686.86	684.3	19.6	4.15	4.41	-0.26	682.45	7-17	Shallow till	ML	2
JAW-06	06/01/02	678.04	675.4	28.6	5.08	5.30	-0.22	672.74	16-26	Shallow till	ML-SM	2
IAW-07	06/01/02	689.32	687.0	22.3	4.40	5.81	-1.41	683.51	10-20	Shallow till	CLw/SC&SM	2
IAW-64	06/01/02	686.71	684.1	21.6	3.12	4.15	-1.03	682.56	9-19	Shallow till	CLw/trace SC	2
JAW <u>-614 (B)</u>	06/01/02	675.74	673.5	39.6	17.19	18.32	-1.13	657.42	27-37	Upper bedrock	Limestone&Shale	4
EBP-MW1 (B)	06/01/02	670.89	668.3	57.5	31.19	30.84	0.35	640.05	44.5-54.5	Bedrock	Limestone&Shale	2
EBP-MW2	06/01/02	684.80	682.2	146.4	42.80	43.18	-0.38	641.62	133.5-143.5	Basal till	<u>Сн-он</u>	2
EBP-MW3	06/01/02	690.63	688.0	27.2	4.80	5.12	0.32	685.51	14.5-24.5	Shallow till	CLw/SC	2
Incendiary Disposal	Area, (IAAP	-13) There are a	<u>no w</u> ells at thi	s site.								
Boxcar Unloading A	Area, (IAAP-1	4) There are no	wells at this	site.	_	-						
Old Flyash Waste F	ile, (IAAP-15)	There are no v	wells at this si	te.								
Pesticide Pit, (IAAI	2-17)											
Sump	06/01/02	NA	NA	NA	5.77	7.05	-1.28	NA	NA		NA	NA
AW-615	06/01/02	693.50	691.3	18.7	3.25	4.26	-1.01	689.24	6.5-16.5	Shallow till	CL-SC	2
IAW-616	06/01/02	693.76	691.4	18.8	4.46	4.82	-0.36	688.94	6.5-16.5	Shallow till	CH-SC	2
AW-617	06/01/02	693.83	691.6	18.8	3.93	4.85	-0.92	688.98	6.5-16.5	Shallow till	CH-SC	2
G-16	06/01/02	696.11	693.5	21.9	5.41	6.58	-1.17	689.53	10-20	Shallow till	CL-SC	4
Possible Demolition	Site, (IAAP-1	8) There are no	wells at this	site.	·							
Contaminated Clot	ning Laundry.	(IAAP-19) The	re are no we	ls at this site								
Inert Disposal Area									_			
IDA-MW1 (B)	<u> </u>	696.00	693.6	151.4	43.94	43.97	-0.03	652.03	138-148	Upper bedrock	Limestone	2
DA-MW1 (B) DA-MW2 (B)	05/29/02	696.00 703.03	<u>693.6</u> 701.4	<u>151.4</u> 114.7	43.94	43.97	-0.03	652.03	138-148 102-112	Upper bedrock Bedrock	Limestone	2
DA-MW2 (B)	05/29/02 05/29/02	703.03	701.4	114.7	49.84	49.31		653.72	102-112			
DA-MW2 (B) CAMU-99-1S ²	05/29/02 05/29/02 05/29/02	703.03 694.17	701.4 688.9	114.7 32.3	49.84 12.73	49.31 12.70	0.53	653.72 681.47	102-112 19.5-29.5	Bedrock Shallow till	Limestone CLw/SP	2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ²	05/29/02 05/29/02 05/29/02 05/31/02	703.03 694.17 694.11	701.4 688.9 689.0	114.7 32.3 149.7	49.84 12.73 43.46	49.31 12.70 43.46	0.53 0.03 0.00	653.72 681.47 650.65	102-112 19.5-29.5 137-147	Bedrock Shallow till Upper bedrock	Limestone CLw/SP Limestone	2 2 2 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ²	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02	703.03 694.17 694.11 706.51	701.4 688.9 689.0 701.6	114.7 32.3 149.7 32.5	49.84 12.73 43.46 14.06	49.31 12.70 43.46 12.64	0.53 0.03 0.00 1.42	653.72 681.47 650.65 693.87	102-112 19.5-29.5 137-147 20-30	Bedrock Shallow till Upper bedrock Shallow till	Limestone CLw/SP Limestone SC-GC	2 2 2 2 2 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ²	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67	701.4 688.9 689.0 701.6 701.5	114.7 32.3 149.7 32.5 160.3	49.84 12.73 43.46 14.06 56.45	49.31 12.70 43.46 12.64 58.23	0.53 0.03 0.00 1.42 -1.78	653.72 681.47 650.65 693.87 648.44	102-112 19.5-29.5 137-147 20-30 147.5-157.5	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock	Limestone CLw/SP Limestone SC-GC Limesone&Shale	2 2 2 2 2 2 2 2 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ²	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02	703.03 694.17 694.11 706.51	701.4 688.9 689.0 701.6	114.7 32.3 149.7 32.5 160.3 32.8	49.84 12.73 43.46 14.06 56.45 14.99	49.31 12.70 43.46 12.64 58.23 14.91	0.53 0.03 0.00 1.42 -1.78 0.08	653.72 681.47 650.65 693.87 648.44 696.49	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC	2 2 2 2 2 2 2 2 2 2 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ²	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67	701.4 688.9 689.0 701.6 701.5	114.7 32.3 149.7 32.5 160.3	49.84 12.73 43.46 14.06 56.45	49.31 12.70 43.46 12.64 58.23 14.91 26.62	0.53 0.03 0.00 1.42 -1.78 0.08 NA	653.72 681.47 650.65 693.87 648.44 696.49 690.65	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL	2 2 2 2 2 2 2 2 2 2 2 2 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40	701.4 688.9 689.0 701.6 701.5 706.0	114.7 32.3 149.7 32.5 160.3 32.8	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC	2 2 2 2 2 2 2 2 2 2 2 2 4
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27	701.4 688.9 689.0 701.6 701.5 706.0 NA	114.7 32.3 149.7 32.5 160.3 32.8 39.9	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80	49.31 12.70 43.46 12.64 58.23 14.91 26.62	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMw/SP	2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 -4 -5-5 -6R	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26 696.99	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Shallow till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMw/SP NA	2 2 2 2 2 2 2 2 2 2 2 4 4 4 4
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4 G-5 G-6R G-7	05/29/02 05/29/02 05/29/02 05/31/02 05/39/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96 692.23 702.10 695.36	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0 689.1 NA 692.8	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6 53.3 30.8 44.2	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04 22.26	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11 21.43	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07 0.83	653.72 681.47 650.65 693.87 648.44 696.49 699.95 654.26 696.99 673.93	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30 32-42	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till Shallow till Intermediate till Shallow till Intermediate till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMW/SP NA CL-SCw/SP&GP	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4 G-5 G-6R G-7 KW-26	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96 692.23 702.10 695.36 703.43	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0 689.1 NA 692.8 701.7	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6 53.3 30.8	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04 22.26 8.25	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11 21.43 9.32	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07 0.83 -1.07	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26 696.99 673.93 694.11	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30 32-42 12.5-22.5	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till Shallow till Shallow till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMw/SP NA CL-SCw/SP&GP SC&SM	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4 G-5 G-6R G-7 AW-26 AW-27 (B)	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96 692.23 702.10 695.36 703.43 685.97	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0 689.1 NA 692.8 701.7 684.2	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6 53.3 30.8 44.2 24.6 118.3	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04 22.26 8.25 37.19	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11 21.43 9.32 37.98	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07 0.83 -1.07 -0.79	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26 696.99 673.93 694.11 647.99	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30 32-42 12.5-22.5 101-116	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till Shallow till Intermediate till Shallow till Upper bedrock/Till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMw/SP NA CL-SCw/SP&GP SC&SM SC/Limestone	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ \end{array} $
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4 G-5 G-6 G-7 AW-26 AW-27 (B) AW-28	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96 692.23 702.10 695.36 703.43 685.97 697.83	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0 689.1 NA 692.8 701.7 684.2 695.8	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6 53.3 30.8 44.2 24.6 118.3 64.6	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04 22.26 8.25 37.19 28.25	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11 21.43 9.32 37.98 27.50	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07 -0.83 -1.07 -0.79 0.75	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26 696.99 673.93 694.11 647.99 670.33	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30 32-42 12.5-22.5 101-116 47-62	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till Shallow till Upper bedrock/Till Intermediate till	Limestone CLw/SP Limestone SC-GC Limestone&Shale SC-GC ML/CL CL-SC SMw/SP NA CL-SCw/SP&GP SC&SM SC/Limestone SCw/SP	2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 2 2 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4 G-5 G-6 G-7 AW-26 AW-27 (B) AW-28	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96 692.23 702.10 695.36 703.43 685.97 687.83 703.55	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0 689.1 NA 692.8 701.7 684.2 695.8 702.2	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6 53.3 30.8 44.2 24.6 118.3 64.6 25.9	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04 22.26 8.25 37.19 28.25 8.70	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11 21.43 9.32 37.98 27.50 5.22	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07 -0.83 -1.07 -0.79 0.75 3.48	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26 696.99 673.93 694.11 647.99 670.33 698.33	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30 32-42 12.5-22.5 101-116 47-62 19-24	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till Shallow till Upper bedrock/Till Intermediate till Shallow till Shallow till Shallow till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMw/SP NA CL-SCw/SP&GP SC&SM SC/Limestone SCw/SP CLw/trace SC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4 G-5 G-6R G-7 AW-26 AW-27 (B) AW-28 AW-25	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96 699.23 702.10 695.36 703.43 685.97 697.83 703.55 712.40	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0 NA 706.1 NA 689.1 NA 692.8 701.7 684.2 695.8 702.2 711.0	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6 53.3 30.8 44.2 24.6 118.3 64.6 25.9 37.8	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04 22.26 8.25 37.19 28.25 8.70 11.30	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11 21.43 9.32 37.98 27.50 5.22 12.38	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07 0.83 -1.07 0.83 -1.07 0.75 3.48 -1.08	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26 696.99 673.93 694.11 647.99 670.33 698.33 700.02	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30 32-42 12.5-22.5 101-116 47-62 19-24 25-35	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till Shallow till Upper bedrock/Till Intermediate till Shallow till Shallow till Shallow till Shallow till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMW/SP NA CL-SCw/SP&GP SC&SM SC/Limestone SCW/SP CLw/race SC CL	2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4 G-5 G-6R G-7 AW-26 AW-28 AW-28 F1	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96 692.23 702.10 695.36 703.43 685.97 697.83 703.55 712.40 706.56	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0 689.1 NA 692.8 701.7 684.2 695.8 702.2 711.0 704.6	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6 53.3 30.8 44.2 24.6 118.3 64.6 25.9 37.8 42.9	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04 22.26 8.25 37.19 28.25 8.70 11.30 19.38	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11 21.43 9.32 37.98 27.50 5.22 12.38 18.59	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07 0.83 -1.07 0.83 -1.07 0.75 3.48 -1.08 0.79	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26 696.99 673.93 694.11 647.99 670.33 698.33 700.02 687.97	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30 32-42 12.5-22.5 101-116 47-62 19-24 25-35 30-40	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till Shallow till Upper bedrock/Till Intermediate till Shallow till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMw/SP NA CL-SCw/SP&GP SC&SM SC/Limestone SCw/SP CLw/trace SC CL	2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 2 2 2 2
DA-MW2 (B) CAMU-99-1S ² CAMU-99-1D (B) ² CAMU-99-2S ² CAMU-99-2D (B) ² CAMU-99-3S ² ET-3 G-4 G-5 G-6R G-7 AW-26 AW-27 (B) AW-28 AW-25	05/29/02 05/29/02 05/29/02 05/31/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02 05/29/02	703.03 694.17 694.11 706.51 706.67 711.40 717.27 707.96 699.23 702.10 695.36 703.43 685.97 697.83 703.55 712.40	701.4 688.9 689.0 701.6 701.5 706.0 NA 706.0 NA 706.1 NA 689.1 NA 692.8 701.7 684.2 695.8 702.2 711.0	114.7 32.3 149.7 32.5 160.3 32.8 39.9 28.6 53.3 30.8 44.2 24.6 118.3 64.6 25.9 37.8	49.84 12.73 43.46 14.06 56.45 14.99 NM 6.47 38.80 4.04 22.26 8.25 37.19 28.25 8.70 11.30	49.31 12.70 43.46 12.64 58.23 14.91 26.62 8.01 37.97 5.11 21.43 9.32 37.98 27.50 5.22 12.38	0.53 0.03 0.00 1.42 -1.78 0.08 NA -1.54 0.83 -1.07 0.83 -1.07 0.83 -1.07 0.75 3.48 -1.08	653.72 681.47 650.65 693.87 648.44 696.49 690.65 699.95 654.26 696.99 673.93 694.11 647.99 670.33 698.33 700.02	102-112 19.5-29.5 137-147 20-30 147.5-157.5 20-30 NA 16-26 40-50 20-30 32-42 12.5-22.5 101-116 47-62 19-24 25-35	Bedrock Shallow till Upper bedrock Shallow till Upper bedrock Shallow till Intermediate till Shallow till Intermediate till Shallow till Upper bedrock/Till Intermediate till Shallow till Shallow till Shallow till Shallow till	Limestone CLw/SP Limestone SC-GC Limesone&Shale SC-GC ML/CL CL-SC SMW/SP NA CL-SCw/SP&GP SC&SM SC/Limestone SCW/SP CLw/race SC CL	2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 2

HydroGeoLogic, Inc. P:\Iowa AAP\GW Monitoring Report\Tables\IAAAPSpring2002_gwrp_tbls

TABLE 3.1
WATER LEVEL MEASUREMENTS SPRING 2002 GROUNDWATER MONITORING EVENT

	Date Measured Spring 02	Well TOC Elevation ¹ (A. MSL)	Ground Elevation ¹ (ft. MSL)	Well Depth (ft. BTOC)	Depth to Water Spring 01 (ft. BTOC)	Depth to Water Spring 02 (ft.:BTOC)	Change in Water Level ² (Spring 01 to Spring 02)	Water Level Elevation Spring 02 (R. MSL)	Screened Depth (BGS)	Screened Interval	Screened Interval Lithology (USCS)	Well Dia. (in)
Inert Disposal Area	tert Disposal Area, (IAAP-20), cont.											
T-9 (B)	05/29/02	702.88	NA	139.0	50.87	50.64	0.23	652.24	127-137	Upper bedrock	Limestone	2
C95-1	05/29/02	699.77	NA	16.3	7.09	6.52	0.57	693.25	5-15	Shallow till	NA	2
C95-2	05/29/02	693.89	NA	26.0	18.72	17.25	1.47	676.64	18-28	Shallow till	NA	2
C-00-1	05/29/02	684.63	NA	29.1	6.13	6.39	-0.26	678.24	12.5-22.5	Shallow till	CL/MLwSW seams	NA
C-00-2	05/29/02	696.43	NA	22.6	10.15	10.54	-0.39	685.89	19-29	Shallow till	CLw/SM-SC	NA
C-00-3	05/29/02	699.92	NA	42.0	23.71	22.81	0.90	677.11	32-42	Intermediate till	CLw/SM-SW	NA
Demolition Area, (I	emolition Area, (IAAP-21) / Deactivation Furnace, (IAAP-23)											
JAW-01 (B)	06/02/02	676.99	674.5	22.0	8.96	9.57	-0.61	667.42	5-20	Upper bedrock/Till	SM&Limestone	2
JAW-02 (B)	06/02/02	685.04	682.8	29.3	15.85	16.15	-0.30	668.89	12-27	Upper bedrock/Till	SM&Limestone	2
G-9	06/02/02	694.86	692.1	27.2	7.98	7.48	0.50	687.38	16.5-26.5	Shallow till	CH-SC	4
G-10 (B)	06/13/02	685.34	681.9	25.6	16.44	15.44	1.00	669.90	14-24	Upper bedrock	Weathered Limestone	4
G-11 (B)	06/02/02	695.03	691.6	38.2	28.50	28.59	-0.09	666.44	26-36	Upper bedrock	Weathered Limestone	4
DA-01 (B)	06/02/02	675.78	673.5	22.9	7.74	8.26	-0.52	667.52	11-20.6	Upper bedrock	Weathered Limestone	4
DA-02 (B)	06/02/02	680.56	678.3	26.8	8.57	10.02	-1.45	670.54	15-24.5	Upper bedrock	Weathered Limestone	4
Unidentified Substa	nce Waste Sit	e, (IAAP-22) TI	here are no w	ells at this si	te.							
Explosives Waste In	cinerator. (IA	AP-25) There	are no wells a	t this site.				-				
Sewage Treatment I					le at this site							
Flyash Landfill, (IA					15 at this site.							_
MW2-91	06/01/02	716.47	714.6	NM	50.04	46.12	3.92	670.35	NA	NA		4
MW4-91	06/01/02	716.39	714.0	NM	51.09	40.12	3.79	669.09	NA NA	NA	NA	4
FL-4	06/01/02	710.39	710.4	NM NM	4.40	5.64	-1.24	706.82	NA	Shallow till	NA	4
FL-6	06/01/02	712.40	714.3	NM	3.72	3.97	-0.25	713.07	NA	Shallow till	NA NA	4
FL-9	06/01/02	714.11	712.4	NM	1.76	2.44	-0.68	711.67	NA	Shallow till	NA	4
FL-10	06/01/02	712.71	710.9	NM -	2.90	3.52	-0.62	709.19	NA NA	Shallow till	NA	4
NEP-E	06/01/02	716.56	714.0	NM		3.95	-0.02 NA	712.61	NA	NA	NA	NA
NEP-W	06/01/02	716.87	714.2	NM	3.49	3.90	-0.41	712.97	NA	Shallow till	NA NA	2
NWP-C	06/01/02	717.01	715.5	NM	9.81	6.42	3.39	710.59	NA	NA NA	NA	2
NWP-N	06/01/02	717.28	715.6	NM	2.82	3.55	-0.73	713.73	NA	Shallow till	NA	2
NWP-S	06/01/02	716.97	715.4	NM	5.69	5.85	-0.16	711.12	NA	Intermediate till	NA	2
SEP-C	06/01/02	717.30	716.0	NM	8.61	8.88	-0.27	708.42	NA	NA	NA	2
SEP-E	06/01/02	716.95	716.0	NM	7.26	8.11	-0.85	708.84	NA	NA		2
SEP-W	06/01/02	717.72	716.3	NM	15.27	15.79	-0.52	701.93	NA	NA		2
Construction Debris				14141			-0.52	101.95				<u> </u>
JAW-8	06/01/02	697.57	695.4	22.1	5.05	7.21	-2.16	690.36	10-20	Shallow till	MLw/SM	2
JAW-9	06/01/02	697.38	692.0	25.4	5.60	8.95	-3.35	688.43	10-20	Shallow till	MLw/SM	2
JAW-10	06/01/02	688.92	686.9	26.1	16.40	16.61	-0.21	672.31	9-24	Shallow till	SM	2
		068.92	080.9	20.1	10.40	10.01	-0.21	072.31	<i>J-24</i>			
Firing Site, (IAAP-3 JAW-32	06/02/02	690.73	688.5	17.3	DRY	11.14	NA	679.59	5-15	Shallow till	ML-SMw/SP seams	2
JAW-32 JAW-33	06/02/02	684.88	682.4	17.5	DRY	11.77	NA NA	673.11	5-15	Shallow till	ML-SM	4
	06/02/02	684.74	682.2	35.1	14.48	15.97	-1.49	668.77	19-34	Up. bed./Glac. outwash	SPw/CH&Limestone	4
JAW-34 (B) JAW-35 (B)	06/02/02	642.74	640.0	23.9	8.22	8.83	-0.61	633.91	13-34	Up. bed./Glac. outwash	SPw/CH&Limestone	4
JAW-35 (B) JAW-36	06/02/02	696.80	694.6	22.2	2.76	4.60	-1.84	692.20	10-20	Shallow till	ML-SM	2
JAW-30 JAW-37	06/02/02	684.92	682.8	17.1	<u></u>	6.99	<u>1.64</u> NA	677.93	5-15	Shallow till	SM	2
JAW-37 JAW-618 (B)	06/02/02	692.92	690.5	60.2	46.25	47.79	-1.54	645.13	52-57	Upper bedrock	Weathered Limestone	4
JAW-618 (B) JAW-619 (B)	06/02/02	684.56	682.4	55.4	<u>46.25</u>	39.36	<u>-1.34</u> NA	645.20	43-53	Upper bedrock	Weathered Limestone	4
UAW-017 [D]	00/02/02	004.50	002.4		1 14141			610.39	5-15	Shallow till	MLw/trace SP	4

TABLE 3.1							
WATER LEVEL MEASUREMENTS SPRING 2002 GROUNDWATER MONITORING EVENT							

	Date Measured Spring 02	Well TOC Elevation ¹ (ft. MSL)	Ground Elevation ¹ (ft. MSL)	Well Depth (ft. BTOC)	Depth to Water Spring 01 (R. BTOC)	Depth to Water Spring 02 (ft. BTOC)	Change in Water Level ³ (Spring 01 to Spring 02)	Water Level Elevation Spring 02 (R. MSL)	Screened Depth (BGS)	Screened Interval	Screened Interval Lithology (USCS)	Well Dia. (in)
Ammunition Box C	hipper Dispose	I Pit. (IAAP-3)) }	AND PARAMETERS		CR. Ward Providence Street					and the second	1999266-33
JAW-620	06/01/02	704.34	702.1	18.8	3.88	5.23	-1.35	699.11	6.5-16.5	Shallow till	CL-SC	2
JAW-621	06/01/02	700.05	697.9	18.7	3.95	4.52	-0.57	695.53	6.5-16.5	Shallow till	CL-SC	2
JAW-622	06/01/02	698.86	697.1	18.3	4.02	3.90	0.12	694.96	6.5-16.5	Shallow till	CL-SC	2
West Burn Pads, (IAAP-34) / West Burn Pads Landfill, (IAAP-35) / Burn Cages, (IAAP-32) / Burn Cages Landfill, (IAAP-33)												
JAW-23 (B)	06/01/02	657.30	654.2	13.1	DRY	9.68	NA	647.62	5-10	Upper bedrock	Weathered Shale	2
JAW-24 (B)	06/01/02	643.14	640.6	13.2	6.19	6.62	-0.43	636.52	5-10	Upper bedrock/Till	SC&Weathered Shale	4
JAW-25	06/01/02	689.91	687.3	21.6	5.41	5.91	-0.50	684.00	9-19	Shallow till	ML-SM	2
JAW-68	06/01/02	679.61	677.1	20.5	4.22	3.84	0.38	675.77	8-18	Shallow till	CLw/trace SC	2
G-30 (B)	06/01/02	654.76	652.0	18.3	10.31	10.27	0.04	644.49	7-17	Upper bedrock	Weathered Limestone	4
WBP-99-12	06/01/02	693.14	690.6	38.2	25.20	26.18	-0.98	666.96	25-35	Shallow till	CL/ML	2
WBP-99-2 ²	06/01/02	680.94	678.3	27.2	19.05	19.86	-0.81	661.08	15-25	Shallow till	CL-SC	2
WBP-99-3 ²	06/01/02	654.43	651.7	20.7	8.04	9.73	-1.69	644.70	8-18	Upper bedrock	Limestone-Shale	2
WBP-99-4 (B) ²	06/01/02	670.76	668.1	27.3	12.31	13.23	-0.92	657.53	19-24	Upper bedrock	Limestonew/Shale	2
WBP-99-5 $(B)^2$	06/01/02	651.85	649.2	22.9	9.43	10.15	-0.72	641.70	10-20	Upper bedrock	Limestone-Shale	2
WBP-99-6 (B) ²	06/01/02	657.65	654.8	43.1	13.93	13.66	0.27	643.99	30-40			2
										Bedrock	Limestone&Shale	_
WBP-99-7 (B) ²	06/01/02	654.74	652.1	53.6	8.50	7.43	1.07	647.31	40-50	Upper bedrock	Limestone-Shale	2
North Burn Pads, ((2) (2)	10.00			
JAW-11 JAW-12	06/01/02	691.01	688.6	31.4	4.52	6.33	-1.81	684.68	19-29	Shallow till	MLw/trace SM	2
	06/02/02	676.81	674.1	23.7	15.53	19.20	-3.67	657.61	16-21	Shallow till	MLw/SM	2
JAW-13 (B)	06/01/02	669.61	667.2	19.4	14.89	NA	NA	NA	7-17	Upper bedrock/Till	SC&Weath. Limest.	2
JAW-14 (B)	06/01/02	673.97	671.3	30.7	10.41	12.15	-1.74	661.82	18-28	Upper bedrock	Limestone&Shale	2
JAW-626	06/01/02	679.80	677.5	19.8	5.80	7.28	-1.48	672.52	7.5-17.5	Shallow till	CH-SC	2
JAW-627 (B) CW-P	06/01/02	683.10 NA	680.6	39.8	31.66	32.05	-0.39	651.05	27.5-37.5 17-27	Upper bedrock NA	Weathered Limestone NA	4 NA
NBPLF-MW1 (B)	06/01/02	693.10	NA 690.5	27.1 70.6	5.47 17.22	5.30 17.12	0.10	NA 675.98	58-68	Upper bedrock	Weathered Limestone	2
Building 600-86 Ser			090.5	/0.0	17.22	17.12	1 0.10	073.98	36-08	Upper beurock	weathered Linestone	<u> </u>
JAW-623	06/01/02	726.89	724.7	18.2	5.23	6.63	-1.40	720.26	6-16	Shallow till	ML-SM	2
JAW-624	06/01/02	720.89	724.7	16.2	8.82	8.80	0.02	718.70	5-15.5	Shallow till	СН	2
Fire Training Area.		121.30	123.3	11.1	0.02	0.00	0.02	/16.70	J-1J.J	j Shanow tun		<u> </u>
JAW-58	06/01/02	688.89	685.9	23.0	4.99	6.65	-1.66	682.24	10-20	Shallow till	ML&CLw/trace SC	2
JAW-59 (B)	06/01/02	685.11	682.5	35.6	7.85	9.68	-1.83	675.43	23-33	Upper bedrock/Till	SC&Fract. Limest.	2
JAW-60 (B)	06/01/02	684.21	681.5	36.8	10.94	12.26	-1.32	671.95	24-34	Upper bedrock/Till	SC&Fract. Limest.	2
JAW-61	06/01/02	685.48	683.0	20.5	6.11	7.98	-1.87	677.50	8-18	Shallow till	CLw/SP seams	2
JAW-62	06/01/02	688.41	685.8	21.6	5.43	6.85	-1.42	681.56	9-19	Shallow till	CL-SC	2
JAW-63	06/01/02	691.49	689.0	22.5	5.83	8.04	-2.21	683.45	10-20	Shallow till	SC&SM	2
JAW-80 (B)	06/01/02	675.33	672.7	27.6	5.96	7.21	-1.25	668.12	15-25	Upper bedrock/Till	SM&Limestone	2
M-01	06/01/02	NA	NA	20.4	9.22	9.25	-0.03	NA	8-18	NA	NA	2
SA-99-1 (Sump)2	06/01/02	688.91	687.4	29.9	2.61	4.94	-2.33	683.97	18.5-28.5	Shallow-Intermediate till	CL/MLw/SW	6
FTA-99-1 ²	06/01/02	673.31	670.2	19.8	9.17	11.85	-2.68	661.46	6.7-16.7	Shallow till	CLw/SM	2
FTA-99-2 (B) ²	06/01/02	673.30	670.5	53.0	17.93	17.98	-0.05	655.32	40.3-50.3	Upper bedrock	Shale-Limestone	2
						17.90	-0.05	055.52	40.5-50.5		Bhate Emilestone	ہتـــ
Roundhouse Transf Abandoned Coal St	*				inis site.							
Plant Boundary and												
G-1	06/01/02	719.85	716.0	23.0	4.81	7.69	-2.88	712.16	10-20	Shallow till	CL	4
G-2	06/01/02	718.07	715.2	20.1	3.65	4.07	-0.42	714.00	8-18	Shallow till	CL-CH	4
G-3	06/01/02	688.02	684.1	32.2	11.56	12.51	-0.95	675.51	20.5-30.5	Intermediate till	CL&MLw/trace SP	4
G-12	06/01/02	666.07	663.3	22.4	5.24	5.89	-0.65	660.18	9.5-19.5	Shallow till	CL	4
G-13 (B)	06/01/02	649.39	646.7	31.2	11.47	19.77	-8.30	629.62	18.5-28.5	Upper bedrock	Fractured Limestone	4

2

TABLE 3.1
WATER LEVEL MEASUREMENTS SPRING 2002 GROUNDWATER MONITORING EVENT

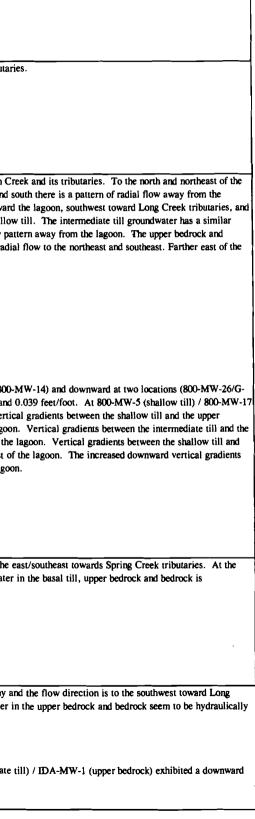
	Date Measured Spring 02	Well TOC Elevation ¹ (ft. MSL)	Ground Elevation ¹ (ft. MSL)	Well Depth (ft. BTOC)	Spring 01	Depth to Water Spring 02 (ft. BTOC)	Change in Water Level ³ (Spring 01 to Spring 02)	Water Level Elevation Spring 02 (ft. MSL)	Screened Depth (BGS)	Screened Interval	Screened Interval Lithology (USCS)	Well Dia. (în)
G-21	06/01/02	540.87	538.8	19.1	NM	7.97	NA	532.90	7-17	Shallow till	CHw/SP seams	4
G-22	06/01/02	678.04	675.9	45.2	3.91	3.30	0.61	674.74	32-42	Intermediate till	CLw/SP	4
Plant Boundary and	d General Are	a, cont.				_						
G-23	06/01/02	671.76	669.6	21.0	6.19	7.19	-1.00	664.57	9-19	Shallow till	CL-SC	4
G-24 (B)	06/01/02	602.37	600.1	17.3	10.98	12.96	-1.98	589.41	6-16	Upper bedrock	Fractured Limestone	4
G-25	06/01/02	630.72	628.1	83.6	15.57	15.24	0.33	615.48	71-81	Basal till	CL-CH	4
G-26	06/01/02	659.92	656.4	103.5	42.19	37.83	4.36	622.09	90-100	Basal till	CL-CH	4
G-27	06/01/02	666.18	NA	25.4	2.73	2.74	-0.01	663.44	14-24	Shallow till	SC&SP	4
G-28	06/01/02	678.10	674.7	22.7	7.33	7.45	-0.12	670.65	10-20	Shallow till	CL	4
G-31	06/01/02	669.62	NA	17.6	4.26	7.44	-3.18	662.18	5-15	Shallow till	CLw/SP	4
G-49	06/01/02	720.03	718.1	31.8	2.81	4.76	-1.95	715.27	19.5-29.5	Intermediate till	SMw/SP	4
G-51	06/01/02	648.02	643.9	17.3	4.22	5.31	-1.09	642.71	10.2-15	Shallow till	SM SM	4
G-52 (B)	06/01/02	636.74	634.7	38.9	-1.44	Artesian	NA	NA	31.7-36.7	Bedrock	Shale&Limestone	4
G-53	06/01/02	637.02	634.8	12.7	5.56	8.41	-2.85	628.61	5-10	Shallow till	SMw/SP	4
G-54 (B)	06/01/02	613.74	611.6	67.5	5.17	6.39	-1.22	607.35	59.2-64.2	Bedrock	Limestone	4
G-55	06/01/02	613.08	611.0	18.0	8.84	8.32	0.52	604.76	10.3-15.3	Shallow till	ML-SM	4
13-B (B)	06/01/02	629.54	627.7	44.8	18.31	19.67	-1.36	609.87	33.6-43.6	Upper bedrock	Fractured Limestone	2
13-D (B)	06/01/02	654.59	652.8	87.5	34.18	33.15	1.03	621.44	74.8-84.8	Bedrock	ML/SW	2
13-E (B)	06/01/02	654.21	652.6	37.3	10.51	10.59	-0.08	643.62	24.5-34.5	Upper bedrock	NA	2
13-F (B)	06/01/02	660.44	658.7	57.9	7.60	13.68	-6.08	646.76	45-55	Upper bedrock	SM-ML	2
JAW-76 (B)	06/01/02	603.41	600.8	80.3	21.92	21.67	0.25	581.74	67-77	Bedrock	Shale&Limestone	2

KEY:

¹All elevations listed were surveyed using North American Vertical Datum of 1988, with a GPS (except where noted). The achieved survey accuracy is about 1 cm horizontally and 1 to 2 cm vertically (American Survey Consultants).

²Elevations listed were surveyed using the National Geodetic Vertical Datum (NGVD) of 1929, and were projected to the North American Vertical Datum (NAVD) of 1988. The margin of error for transformations between NGVD 29 and NAVD 88 is typically 12-18 cm.

³A negative symbol associated with the change in water levels between Spring 2001 and Spring 2002 indicates a decreased water level in Spring 2002. The absence of a negative symbol indicates an increased water level in Spring 2002.


(B) = Upper bedrock or bedrock well.

CL≈ Lean Clay	SC = Clayey Sand
SP=Poorly Graded Sand	ML=Silt
SM=Silty Sand	CH = Fat Clay
MH = Elastic Silt	SW = Well-Graded Sand
GC = Clayey Gravel	GP = Poorly Graded Gravel
	SP=Poorly Graded Sand SM=Silty Sand MH = Elastic Silt

Site Name, (IAAP Site Designation)	Screened Interval	Depth to Groundwater Range (ft. BGS) Spring 2002	Horizontal Hydraulic Gradient Magnitude (feet/foot) Spring 2002	Horizontal Hydraulic Gradient Direction Spring 2002		Other Hydrogeologic Results Spring 2002
	Shallow till	1.10 to 7.72	0.009 to 0.023	West and southwest towards Brush Creek.	Site Hydrogeology:	There are three main occurrences of groundwater at Line 1. The groundwater in the shallow till is controlled by the site topography and
Line 1,	Intermediate till	+2.25 to 10.16	0.0070 to 0.0074	South-southwest toward Brush Creek.	-	the west side of the site. Groundwater in the intermediate till flows in a more southerly direction than in the shallow till. Groundwater is bedrock in a south-southeasterly direction.
(IAAP-1) / Line 1 Impoundment	Basal till	There are no well	s screened in the basal til		1	
(IAAP-16)	Glacial outwash		NA	South-southeast	Vertical Gradient:	In the spring, well cluster JAW-51 (shallow till)/ JAW-603 (upper bedrock) exhibited a downward gradient of 0.25 feet/foot.
	Upper bedrock	+2.64 to 23.37		South-southeast	-	
	Bedrock	There are no well	s screened in the bedrock			
	Shallow till	+0.02 to 7.57	0.054 to 0.0045	West, northwest, and southwest toward Brush Creek.	Site Hydrogeology:	The groundwater flow in the shallow till is controlled by the site topography and the flow direction is generally from the upland areas and groundwater flows to the west-southwest. Groundwater in the south half exhibits a radial flow pattern to the west, northwest, and southwe Because the general flow direction in the intermediate till is northward, groundwater movement in this water bearing unit is only marging the south and the general flow direction.
	Intermediate till	2.90 to 5.27	0.0033 to 0.0076	North		
Line 2,	Basal till	There are no well	s screened in the basal til	1.]	
(IAAP-2)	Glacial outwash	NA	NA	NA	Vertical Gradient:	The three-well cluster 12-B (shallow till), 12-C (intermediate till), and 12-D (upper bedrock) was used to calculate vertical gradients. The intermediate till was 0.052 feet/foot. The downward gradient between shallow till and upper bedrock was 0.12 feet/foot. The downward
	Upper bedrock	16.90	NA	NA		0.16 feet/foot.
	Bedrock	There are no well	s screened in the bedrock]	
	Shallow till		0.0088 to 0.011	Southeast towards Brush Creek.	Site Hydrogeology:	Groundwater in the shallow till is controlled by the site topography and the flow is generally from the upland areas and terraces toward E
1	Intermediate till		NA	<u>NA</u>	-	
Line 3,	Basal till		s screened in the basal til		4	
(IAAP-3)	Glacial outwash	NA	NA	NA	Vertical Gradient:	In the spring, well cluster 16-D (shallow till) / 16-E (intermediate till) exhibited a downward gradient of 0.095 feet/foot.
	Upper bedrock	11.57	NA	NA	vertical Gradient:	in the spring, wen cluster to D (sharlow (iii) / to E (intermediate (iii) exhibited a downward gradient of 0.055 recordor.
	Bedrock	There are no well	s screened in the bedrock			
Line 3A,	Shallow till	1.48 to 8.01	0.0045 to 0.0125	South and southwest towards Skunk River tributaries.	Site Hydrogeology:	Around the well locations at the site, which generally lie in the central and southern portion of the site, groundwater in the shallow till is southwest toward nearby Skunk River tributaries. However, north of the existing wells, the groundwater flow is likely northward toward glacial outwash and upper bedrock is along the bedrock interface and is generally toward the northeast.
(IAAP-4) / Line 3A Pond,	Intermediate till	There are no well	s screened in the interme	diate till.		
(IAAP-41) /	Basal till	There is no basal	till unit.]	
Line 3A STP, (IAAP-29)	Glacial outwash Upper bedrock	14.56 to 42.34	NA	Northeast	Vertical Gradient:	In the spring, well cluster JAW-21 (shallow till) / JAW-20 (glacial outwash-upper bedrock) exhibited a downward gradient of 0.58 feet/fe
	Bedrock	There are no well	s screened in the bedrock	 	1	
	Shallow till	1.00 to 7.49	0.0025 to 0.017	Southeast	Site Hydrogeology:	Generally, groundwater in the shallow till is controlled by the site topography and the flow is to the southeast toward tributaries of Brush groundwater flow is expected to follow the topography southwest toward Long Creek tributaries.
	Intermediate till	There are no well	is screened in the interme	diate till.	1	
	Basal till	NA	NA	NA]	
(IAAP-5)	Glacial outwash	NA	NA	NA		
	Upper bedrock		s screened in the upper b		Vertical Gradient:	The are no well clusters at this site to determine vertical gradients.
	Bedrock	There are no well	s screened in the bedrock		_	
	Shallow till	1.63 to 5.22	0.0037 to 0.012	Southeast and southwest	Site Hydrogeology:	Generally, groundwater flow in the shallow till is controlled by the site topography from uplands to drainage basins) and a north-south fle direction in the eastern portion of the site is to the southeast toward Brush Creek tributaries. The flow direction in the western portion of
	Intermediate till		s screened in the interme		4	
Line 5A and 5B,	Basal till		s screened in the basal ti	ll	4	
(IAAP-6)	Glacial outwash	The is no glacial			Vertical Gradient:	Well cluster JAW-606 (shallow till) / JAW-609 (upper bedrock) exhibited a downward gradient of 0.32 feet/foot.
	Upper bedrock		NA	NA		
	Bedrock	There are no well	s screened in the bedrock	. <u> </u>	l	

d the flow direction is generally toward Brush Creek along r flow in the upper bedrock is parallel to the strike of the
and terraces toward Brush Creek. In the north half of the site hwest. The horizontal gradient increases near Brush Creek. inally controlled by the site topography.
The downward gradient between shallow till and ard gradient between intermediate till and upper bedrock was
I Brush Creek.
is controlled by the site topography and the flow is south and
is controlled by the site topography and the flow is south and ard adjacent Long Creek tributaries. Groundwater flow in the
1/foot.
ish Creek. At the far west end of the site, shallow till
flow divide appears to lie beneath the site. The flow of the site is toward Long Creek tributaries.

Site Name, (IAAP Site Designation)	Screened Interval	Depth to Groundwater Range (ft. BGS) Spring 2002	Horizontal Hydraulic Gradient Magnitude (feet/foot) Spring 2002	Horizontal Hydraulic Gradient Direction Spring 2002	Other Hydrogeologic Results Spring 2002	
	Shallow till	1.24 to 3.59	0.013 to 0.016	Southwest	Site Hydrogeology:	Groundwater in the shallow till is controlled by the site topography and the flow is generally to the southwest toward Long Creek tributar
	Intermediate till	ntermediate till There are no wells screened in the intermediate till.				
Line 9,	Basal till				-	
(IAAP-10)	Glacial outwash	NA	NA	NA		
	Upper bedrock	k There are no wells screened in the upper bedrock.			Vertical Gradient:	The are no well clusters at this site to determine vertical gradients.
	Bedrock There are no wells screened in the bedrock.					
	Shallow till	0.39 to 5.21	0.0096 from the West 0.035 to the North 0.0042 to the East	Southeast and radially away from lagoon, except on the west side.	Site Hydrogeology:	There are three main occurrences of groundwater at Line 800. Shallow till groundwater generally flows to the southeast toward Brush Cr lagoon, horizontal gradients increase and shallow till groundwater is discharged into a tributary of Brush Creek. To the north, east, and s lagoon, in response to the greater hydraulic head of the lagoon. To the west, shallow groundwater flow is radially distributed east toward northeast toward Brush Creek tributaries. The mounding of the water table around the lagoon results in increased recharge to the shallow flow pattern as the shallow till and is also influenced by the mounding of groundwater around the lagoon creating a similar radial flow pa bedrock groundwater seem to be hydraulically-connected. Near the lagoon, groundwater flow in the upper bedrock/bedrock exhibits radia lagoon, groundwater flow is to the west and northwest back toward the lagoon.
	Intermediate till	0.99 to 11.90	0.024 to the North 0.0088 to the East	Southeast and radially away from lagoon.		
Line 800, (IAAP-11) / Pink Water Lagoon (IAAP-44)	Basal till Glacial outwash				Vertical Gradient:	Vertical gradients between the shallow till and the intermediate till were upward at two locations (800-MW-5/800-MW-17 and G-20/800- 56 and G-19/800-MW-7). The two downward gradients were 0.026 and 0.084 feet/foot, while the two upward gradients were 0.026 and (intermediate till) the upward vertical gradient appear to have resulted in shallow till groundwater exiting to the surface as a seep. Vertic
	Glacial outwash There is no well-defined glacial outwash unit.					
	Upper bedrock	2.88 to 22.09	NA	Southwest		bedrock were downward and ranged from an average of 0.15 feet/foot west of the lagoon to an average of 0.79 feet/foot east of the lagoo upper bedrock were downward and ranged from an average of 0.10 feet/foot west of the lagoon to an average of 0.38 feet/foot east of the the bedrock also were downward and ranged from an average of 0.065 feet/foot west of the lagoon to an average of 0.23 feet/foot east of from the west to east in the shallow till to bedrock and intermediate till to bedrock is likely due to the greater hydraulic head in the lago
	Bedrock	6.93 to 27.27	NA	Southwest		
	Shallow till	1.51 to 3.92	0.010 to 0.030	East and southeast	Site Hydrogeology:	Groundwater flow in the shallow till is controlled by the site topography and the flow direction is generally from the upland areas to the
	Intermediate till	There are no wells screened in the			1	northwest edge of the site the groundwater flow is expected to follow the site topography to the west toward Spring Creek. Groundwate hydraulically-connected and the flow is to the south, southeast, and southwest.
Foot Burn Dad-	Basal till	40.58	NA	South, southeast, and	7	
East Burn Pads, (IAAP-12)	Glacial outwash	The is no glacial		southwest	4	
()	Upper bedrock		0.022 to 0.035	South, southeast, and	1	
	Bedrock	28.25	NA	southwest	Vertical Gradient:	The are no well clusters at this site to determine vertical gradients.
	Shallow till	3.32 to 17.20	0.027 to 0.049	southwest	Site Hydrogeology:	There are three main occurrences of groundwater at the IDA. Groundwater flow in the shallow till is controlled by the site topography a
				Southwest	ITAI OFCOIDED.	Creek tributaries. Groundwater in the intermediate till flows in a similar direction, to the southwest toward Long Creek. Groundwater
	Intermediate till				-	connected and the flow is to the south and west.
Inert Disposal Area,	Basal till There are no wells screened in the basal till.				4	
(IAAP-20)	Glacial outwash	utwash The is no glacial outwash unit.			Vertical Gradient:	Vertical gradients between shallow till and upper bedrock is downward and averaged 0.33 feet/foot. Well cluster JAW-28 (intermediate
	Upper bedrock	36.23 to 58.15	0.011 to 0.0067	West	vertical Gradient:	gradient of 0.21 feet/foot.
<u> </u>	Bedrock	47.28	NA	West		

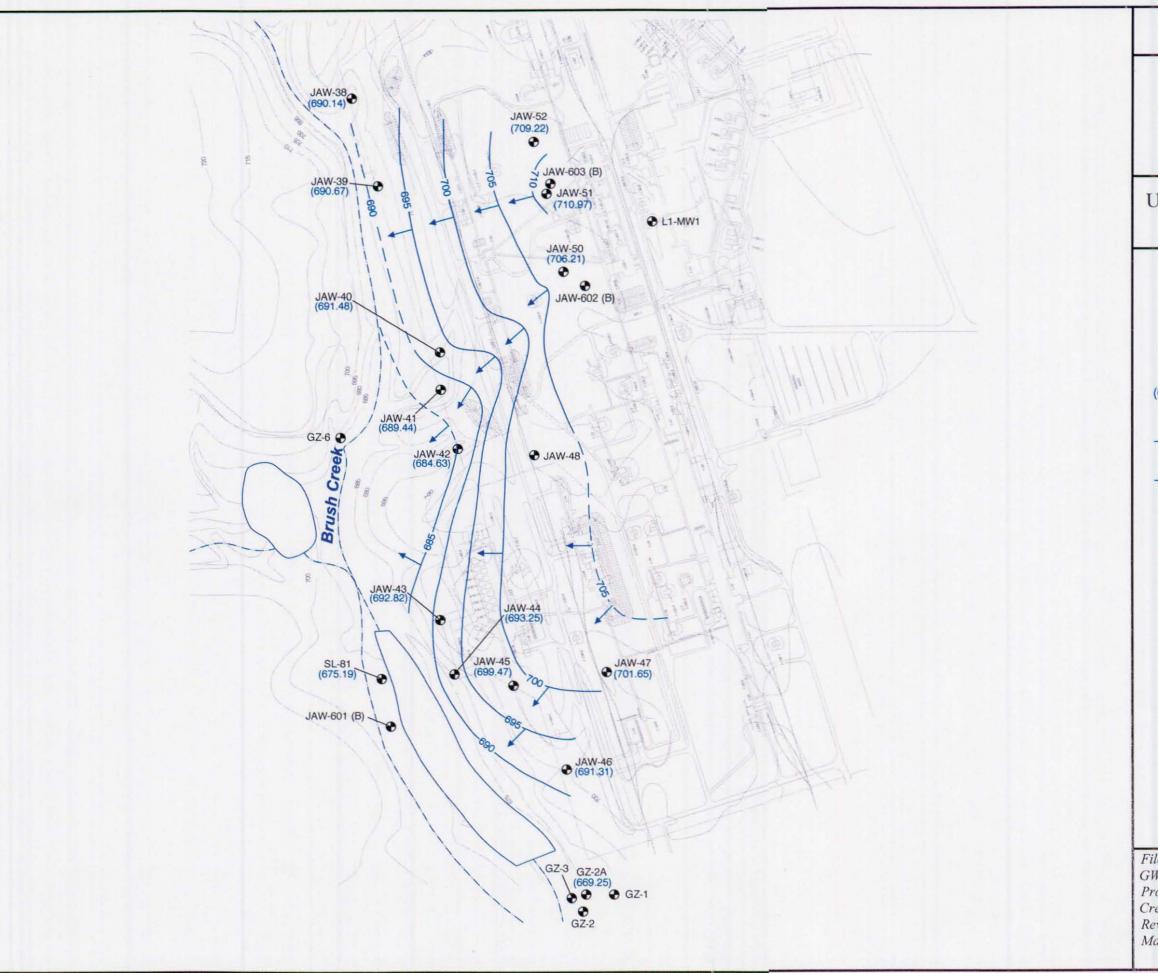
Site Name, (IAAP Site Designation)	Screened Interval	Depth to Groundwater Range (ft. BGS) Spring 2002	Horizontal Hydraulic Gradient Magnitude (feet/foot) Spring 2002	Horizontal Hydraulic Gradient Direction Spring 2002		Other Hydrogeologic Results Spring 2002
	Shallow till	4.72	NA	NA	Site Hydrogeology:	Groundwater at the site is present at the shallow till / upper bedrock interface. The groundwater flows with the dip of the upper bedrock
Demolition Area,	Intermediate till	termediate till There is no intermediate till unit.			-	southwest. Groundwater also follows a radial pattern as it flows away from the demolition pits.
(IAAP-21) /	Basal till					
Deactivation Furnace.	Glacial outwash	ash There is no glacial outwash unit.			1	
(IAAP-23)	Upper bedrock	5.98 to 25.16	0.0032 to 0.009	East / Southeast and radially away from site.	Vertical Gradient:	The are no well clusters at this site to determine vertical gradients.
	Bedrock	There are no well	ls screened in the bedrock			
	Shallow till ^a	2.4 to 9.29	.0176	South and East	Site Hydrogeology:	Groundwater flow in the shallow till is controlled by the site topography and the flow direction is expected to be from the upland areas to Horizontal hydraulic gradients increase around Long Creek and adjacent to the till terraces. Groundwater in the glacial till and upper be
	Intermediate till	There is no interr				Site to the south toward Long Creek. From the south test site groundwater flows from the uplands toward Long Creek to the north and en
Firing Site,	Basal till	There is no basal	till unit.		-	
(IAAP-30)	Glacial outwash Upper bedrock ^b	6.09 to 45.37	.00025	Southeast and North/Northeast	Vertical Gradient:	In the spring, well cluster JAW-33 (shallow till) / JAW-619 (upper bedrock) exhibited a downward vertical gradient of 0.76 feet/foot.
		Those and no mail	ls screened in the bedrock		4	
	Bedrock	1.64 to 2.26	0.0034-0.0046	Southwest	Site Hydrogeology:	Groundwater in the shallow till is controlled by the site topography and the flow direction is to the southwest toward Brush Creek.
Ammunition Box	Intermediate till	There is no intermediate till unit.		-		
Chipper Disposal	Basal till	NA NA NA			1	
Pit,	Glacial outwash	NA	NA	NA	1	
(IAAP-31)	Upper bedrock				Vertical Gradient:	The are no well clusters at this site to determine vertical gradients.
	Bedrock	There are no well	is screened in the bedrock			
West Burn Pads, (IAAP-34) /	Shallow till	1.33 to 23.64	0.045 to 0.111	Radially away from JAW-25 and toward Spring Creek.	Site Hydrogeology:	Groundwater in the shallow till is controlled by the site topography and the general flow direction is to the northeast toward Spring Creek follows a radial pattern away from JAW-25, due to an anomalously high hydraulic head around the well. Groundwater in the upper bedr Spring Creek and its tributaries. As shallow till and upper bedrock groundwater approaches Spring Creek, the two units become hydraul
West Burn Pads Landfill,	Intermediate till	There is no intern	mediate till unit.		1	
(IAAP-35) /						unnamed tributary to the north.
	Basal till	There is no basal	till unit.			unmanned throughy to the north.
Burn Cages, (IAAP-32) /	Basal till Glacial outwash	There is no basal There is no glacia				unmanned tributary to the north.
Burn Cages,	Glacial outwash			East and southeast towards Spring Creek and tributaries.	Vertical Gradient:	The are no well clusters at this site to determine vertical gradients.
Burn Cages, (IAAP-32) / Burn Cages Landfill, (IAAP-33) North Burn Pads,	Glacial outwash	There is no glacia	al outwash unit.	Spring Creek and tributaries. Southeast towards Spring	Vertical Gradient: Site Hydrogeology:	The are no well clusters at this site to determine vertical gradients. Groundwater flow in the shallow till is controlled by the site topography and the flow direction is to the southeast toward Spring Creek as
Burn Cages, (IAAP-32) / Burn Cages Landfill, (IAAP-33) North Burn Pads, (IAAP-36) /	Glacial outwash Upper bedrock Bedrock ^c Shallow till	There is no glacia 4.08 to 10.81	al outwash unit. 0.0109 to 0.0241 0.0304	Spring Creek and tributaries.		The are no well clusters at this site to determine vertical gradients.
Burn Cages, (IAAP-32) / Burn Cages Landfill, (IAAP-33) North Burn Pads,	Glacial outwash Upper bedrock Bedrock ^c	There is no glacia 4.08 to 10.81 3.92 to 16.49	al outwash unit. 0.0109 to 0.0241 0.0304 mediate till unit.	Spring Creek and tributaries. Southeast towards Spring		The are no well clusters at this site to determine vertical gradients. Groundwater flow in the shallow till is controlled by the site topography and the flow direction is to the southeast toward Spring Creek a
Burn Cages, (IAAP-32) / Burn Cages Landfill, (IAAP-33) North Burn Pads, (IAAP-36) / North Burn Pads	Glacial outwash Upper bedrock Bedrock ^c Shallow till Intermediate till	There is no glacia 4.08 to 10.81 3.92 to 16.49 There is no interr There is no basal	al outwash unit. 0.0109 to 0.0241 0.0304 mediate till unit. till unit.	Spring Creek and tributaries. Southeast towards Spring		The are no well clusters at this site to determine vertical gradients. Groundwater flow in the shallow till is controlled by the site topography and the flow direction is to the southeast toward Spring Creek a
Burn Cages, (IAAP-32) / Burn Cages Landfill, (IAAP-33) North Burn Pads, (IAAP-36) / North Burn Pads Landfill,	Glacial outwash Upper bedrock Bedrock ^c Shallow till Intermediate till Basal till	There is no glacia 4.08 to 10.81 3.92 to 16.49 There is no interr	al outwash unit. 0.0109 to 0.0241 0.0304 mediate till unit. till unit.	Spring Creek and tributaries. Southeast towards Spring		The are no well clusters at this site to determine vertical gradients. Groundwater flow in the shallow till is controlled by the site topography and the flow direction is to the southeast toward Spring Creek as

ck which slopes away from the site to the west and
s towards the west and north branches of Long Creek. bedrock flows from the upland areas around the North Test d east
reek and its tributaries. Groundwater in the shallow till also redrock and bedrock flows to the northeast and east toward
aulically-connected and discharge into the creek and its
k and its tributaries. Groundwater in the upper bedrock flows
a end no a towarteo, "oronist water in the upper oconvex nows

Site Name, (IAAP Site Designation)	Screened Interval	Depth to Groundwater Range (ft. BGS) Spring 2002	Horizontal Hydraulic Gradient Magnitude (feet/foot) Spring 2002	Horizontal Hydraulic		Other Hydrogeologic Results Spring 2002
	Shallow till	3.66 to 8.74	0.0213 to 0.0375	North and South/southeast towards Spring Creek	Site Hydrogeology:	Groundwater flow in the shallow till is controlled by the site topography and the flow direction is from the north to the south / southeast groundwater divide exists to the north of the Sump and JAW-63. North of the divide shallow till groundwater follows topography toward
	ShInt. till	3.43	NA	NA	1	upper bedrock is planar along the dip of the bedrock and is generally to the southeast.
Fire Training Area,	Intermediate till	There is no intermediate till unit.			7	
(TAAP-39)	Basal till	There is no basal till unit.			1	
	Glacial outwash	There is no glacial outwash unit.]	
	Upper bedrock	4.55 to 15.18	0.0145 to 0.0488	Southeast	Vertical Gradient:	In the spring, well cluster FTA-99-1 (shallow till) / FTA-99-2 (upper bedrock) exhibited a downward vertical gradient of 0.18 feet/foot.
	Bedrock	There are no wells screened in the bedrock.			1	
	Shallow till	1.2 to 6.22	NA	NA	Site Hydrogeology:	Groundwater in the shallow till is controlled by the topography and the flow direction is generally from the upland areas and terraces to
Plant Boundary and	Intermediate till	1.2 to 8.59	NA	NA	1	
General Area	Basal till	12.61 to 34.33	NA	NA	1	
General Area	Glacial outwash	There is no glacial outwash unit.			7	
	Upper bedrock	8.94 to 17.80	NA	NA	7	
	Bedrock	+2.02 to 31.40	NA	NA]	

KEY:

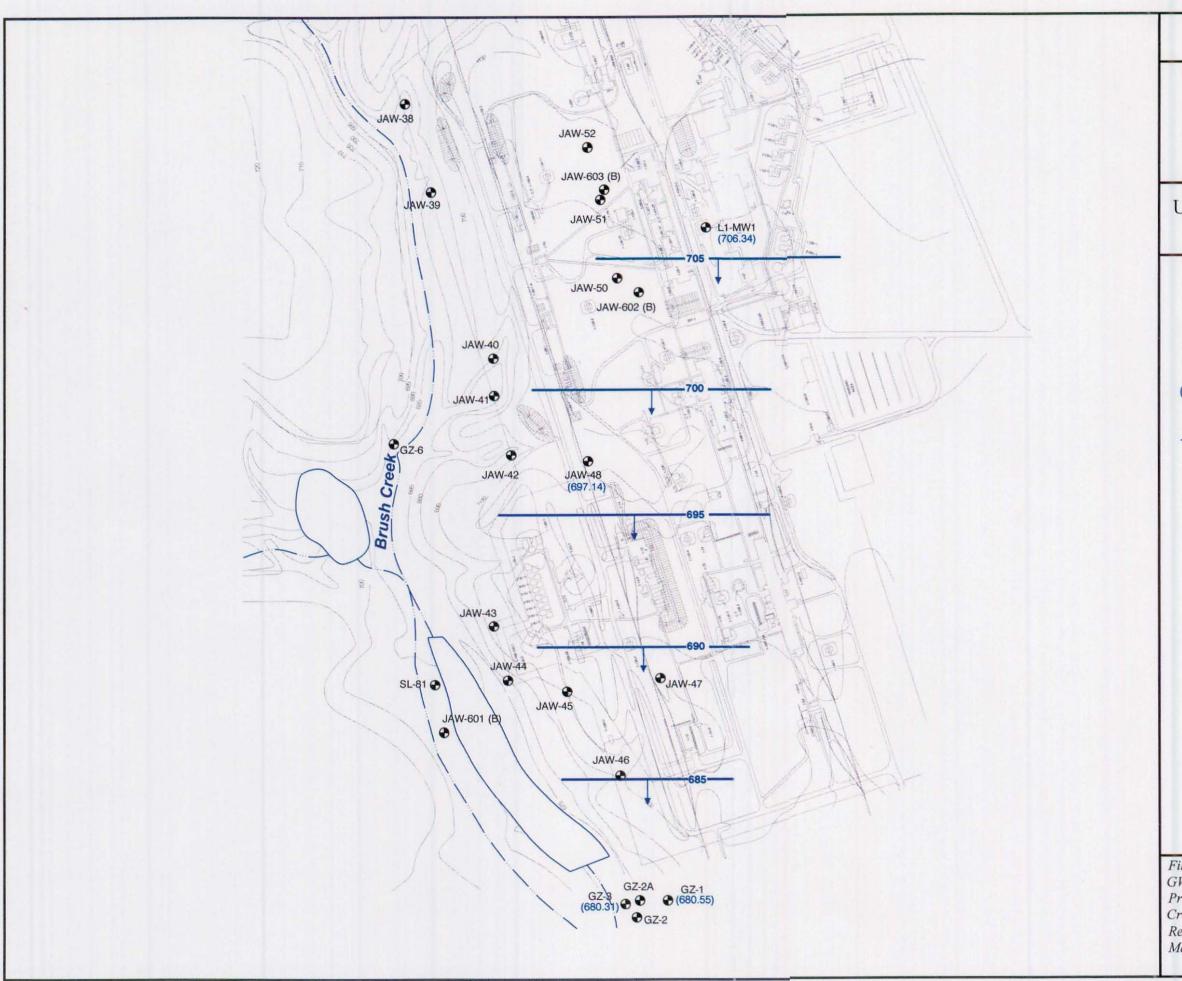
NA = Not enough data is available.


^a = Groundwater flow at JAW-36 is likely east to southeast toward Long Creek.

^b = JAW-34 was not included in the potentiometric interpretation. The more shallow screened interval and groundwater elevation at this location do not coincide with the remaining bedrock wells at this site. The groundwater elevation in this well appears to be significantly influenced by the intermediate till potentiometric surface.

^c = The two deeper bedrock wells (WBP-99-6 and WBP-99-7) were not included in the potentiometric interpretation. The groundwater elevations in these two wells are not representative of the shallow bedrock potentiometric surface.

ast towards Spring Creek tributaries. A shallow till wards a tributary of Spring Creek. Groundwater flow in the

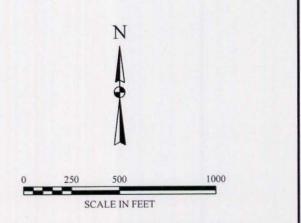

to Long, Brush, and Spring Creeks and the Skunk River.

60 HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa Figure 3.1 a **Groundwater Elevations** Spring 2002 **Shallow Till Wells** Line 1 and Line 1 Impoundment U.S. Army Corps of Engineers Hereit **Omaha** District Legend Monitoring Well • (B) Bedrock Well Groundwater Elevation (678.59)(Feet Above Mean Sea Level) Groundwater Potentiometric Surface (Contour Interval = 5 feet) Inferred Contour Groundwater Flow Direction N 1000

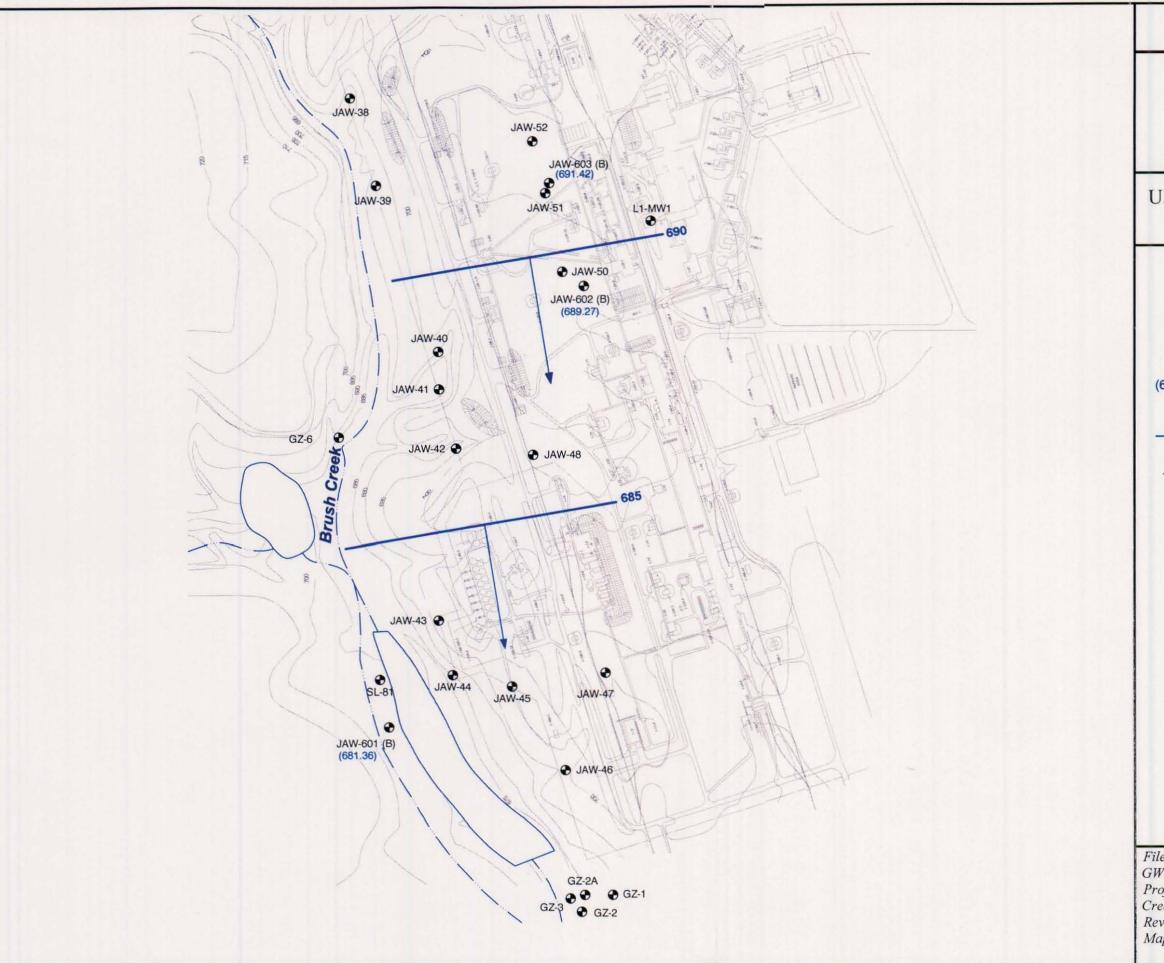
SCALE IN FEET

Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_Shallow_Line1.dwg Project: KAN004-003-02-29 Created by: acarriger 09/17/02 Revised: 03/11/03 tbraswell Map Source: URS

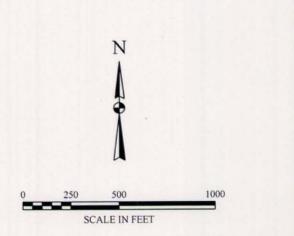
HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa

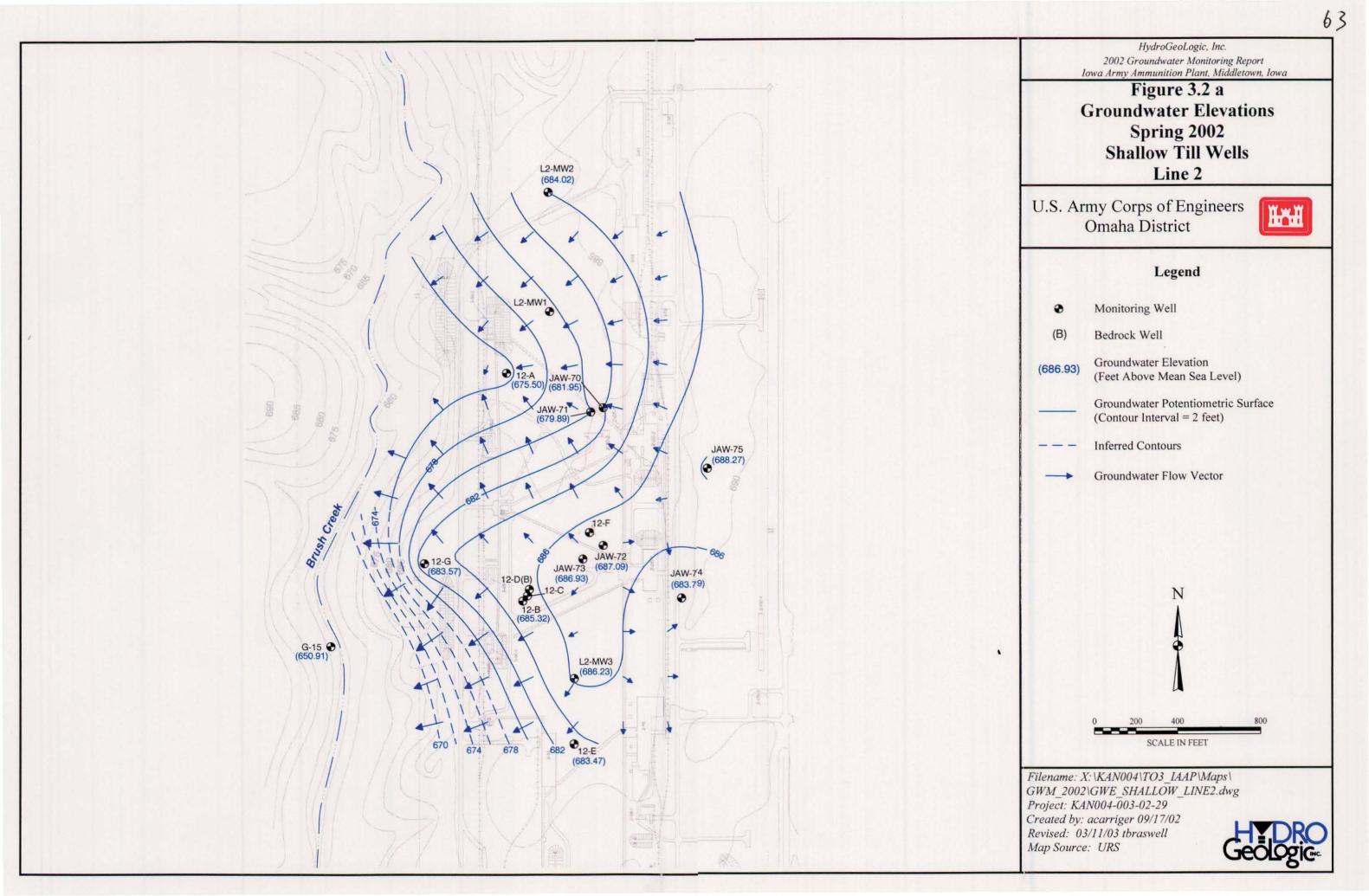

Figure 3.1 b Groundwater Elevations Spring 2002 Intermediate Till Wells, Line 1 and Line 1 Impoundments

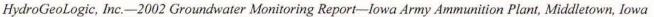
U.S. Army Corps of Engineers Omaha District



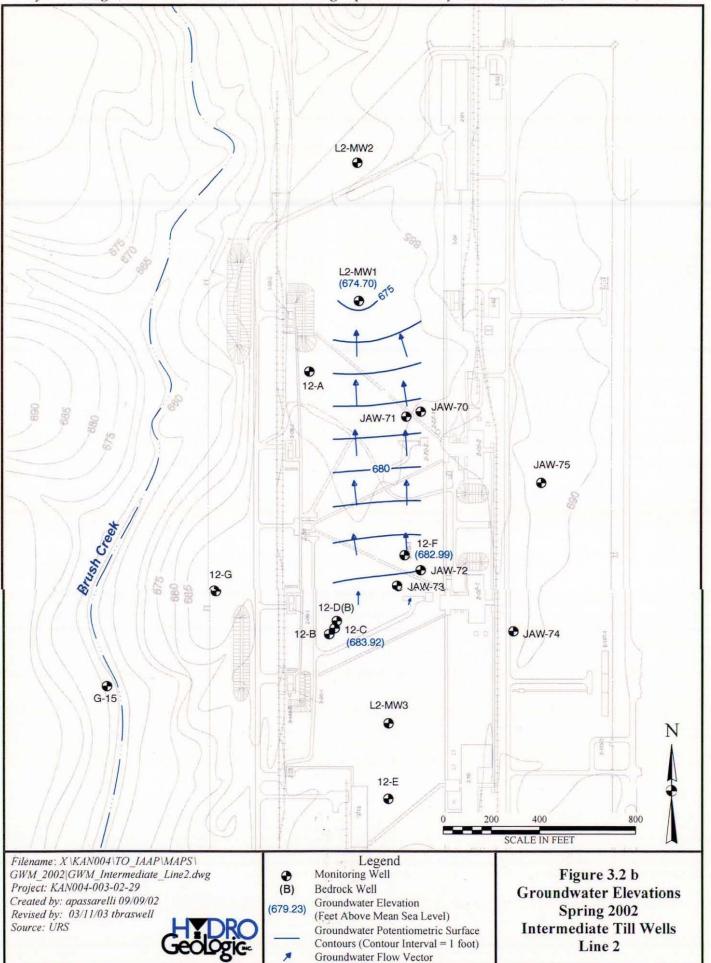
6


	Legend
•	Monitoring Well
(B)	Bedrock Well
680.55)	Groundwater Elevation (Feet Above Mean Sea Level)
	Groundwater Potentiometric Surface (Contour Interval = 5 feet)
	Groundwater Flow Direction

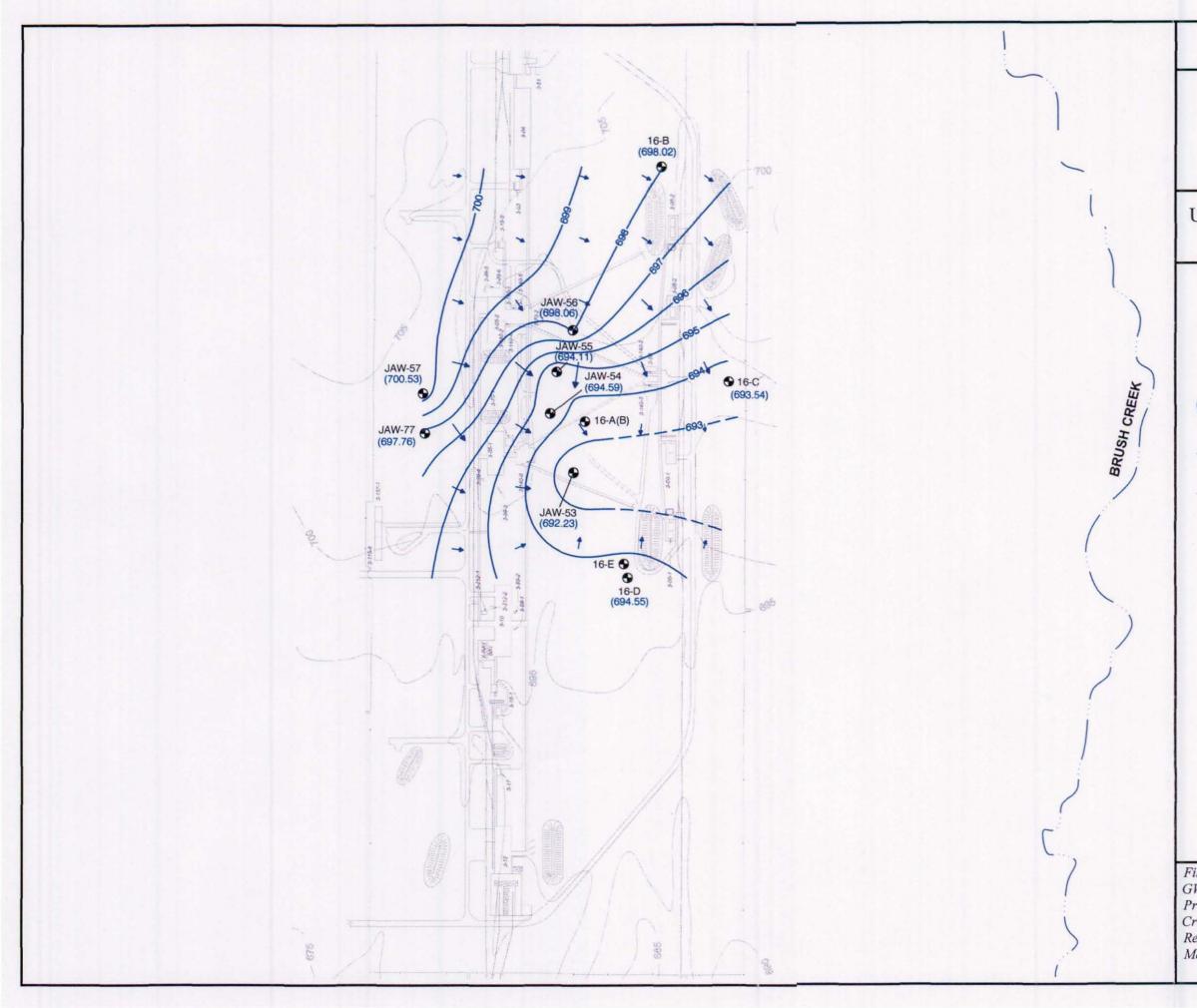

Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_INTERMEDIATE_LINE1.dwg Project: KAN004-003-02-29 Created by: 9/13/02 WFG Revised: 03/11/03 tbraswell Map Source: URS 2001



62 HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa Figure 3.1 c **Groundwater Elevations** Spring 2002 **Upper Bedrock Wells** Line 1 and Line 1 Impoundment U.S. Army Corps of Engineers HAN **Omaha** District Legend Monitoring Well 0 (B) Bedrock Well Groundwater Elevation (678.59) (Feet Above Mean Sea Level) Groundwater Potentiometric Surface (Contour Interval = 5 feet) Groundwater Flow Direction



Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_Upperbed_Line1.dwg Project: KAN004-003-02-29 Created by: apassarelli 09/17/02 Revised: 03/11/04 tbraswell Map Source: URS



64

U.S. Army Corps of Engineers

HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa 65-

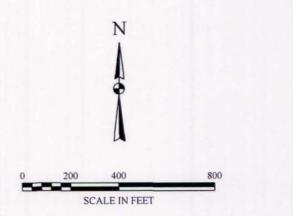
H.

Figure 3.3 Groundwater Elevations Spring 2002 Shallow Till Wells Line 3

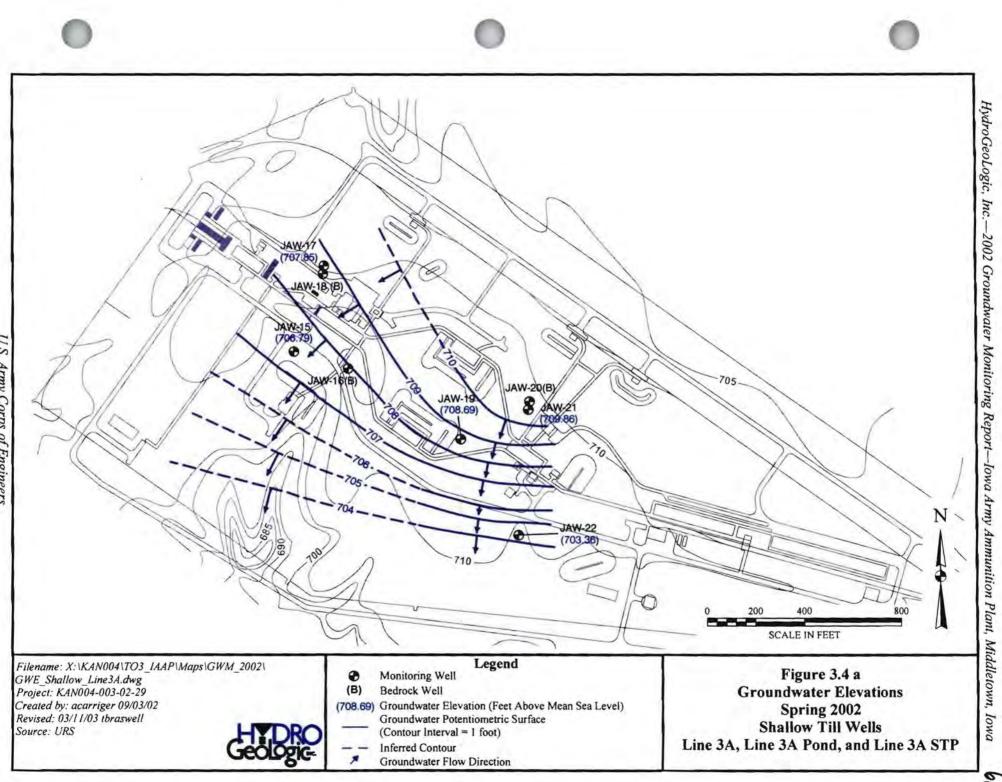
U.S. Army Corps of Engineers Omaha District

Legend

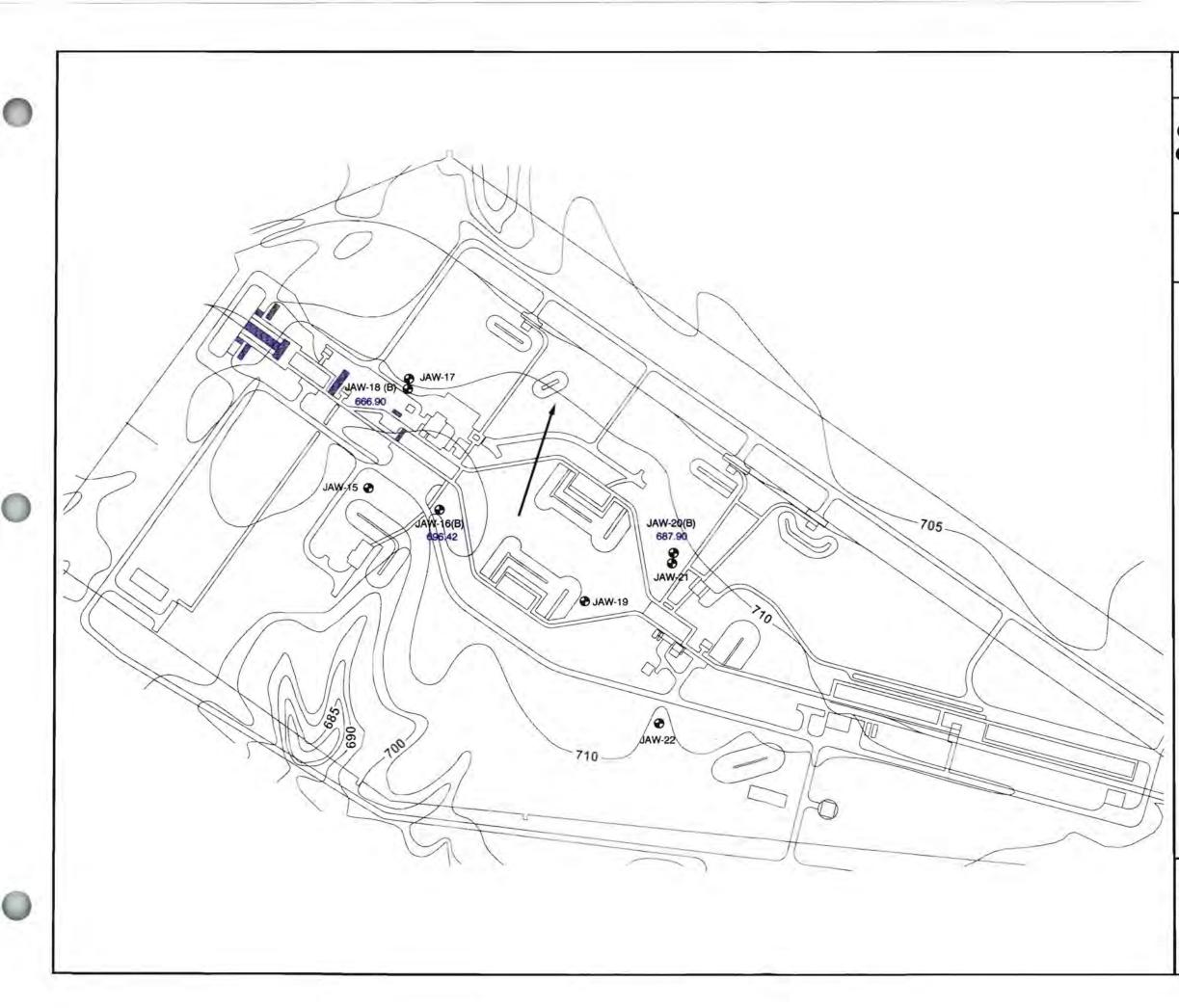
Monitoring Well

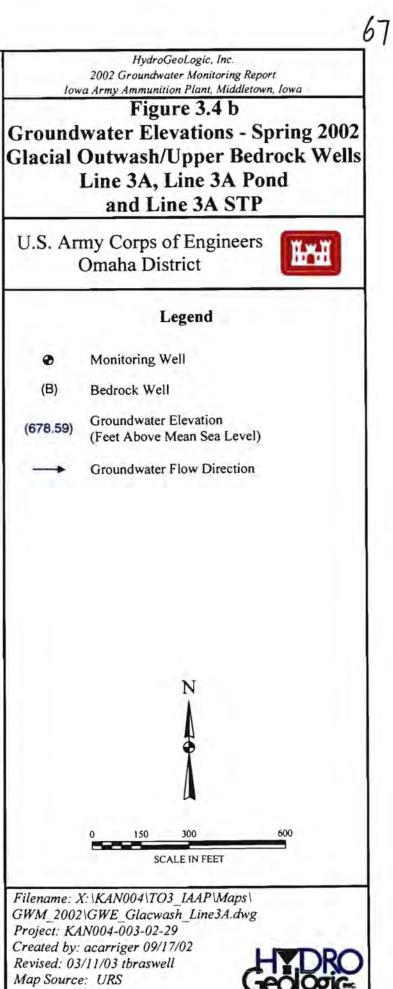

(B) Bedrock Well

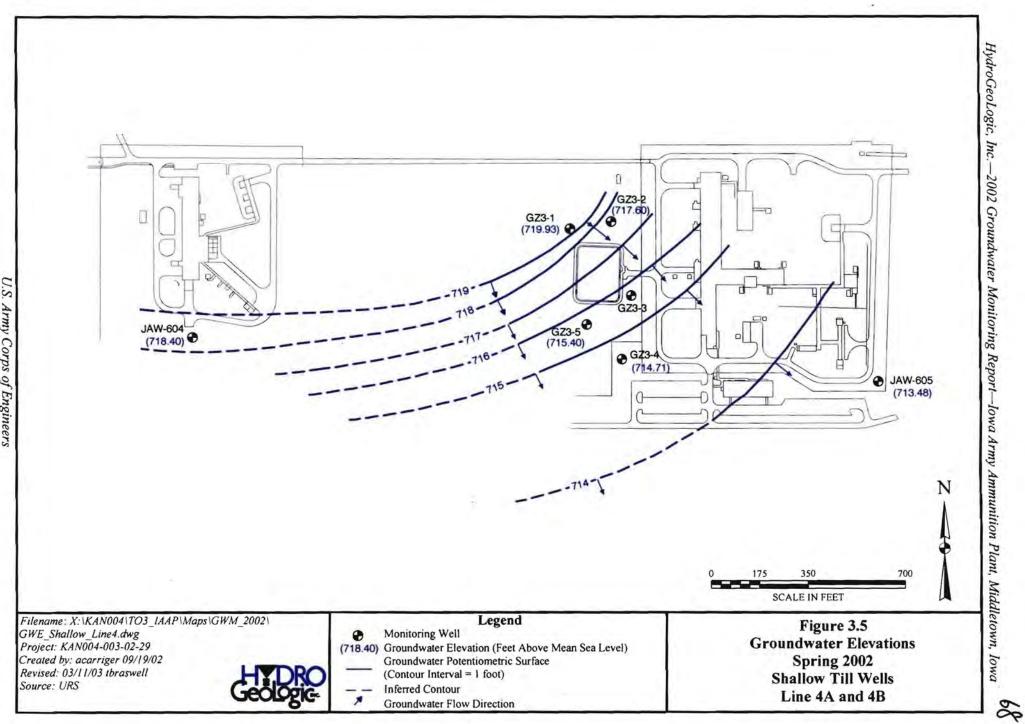
(694.55) Groundwater Elevation (Feet Above Mean Sea Level)

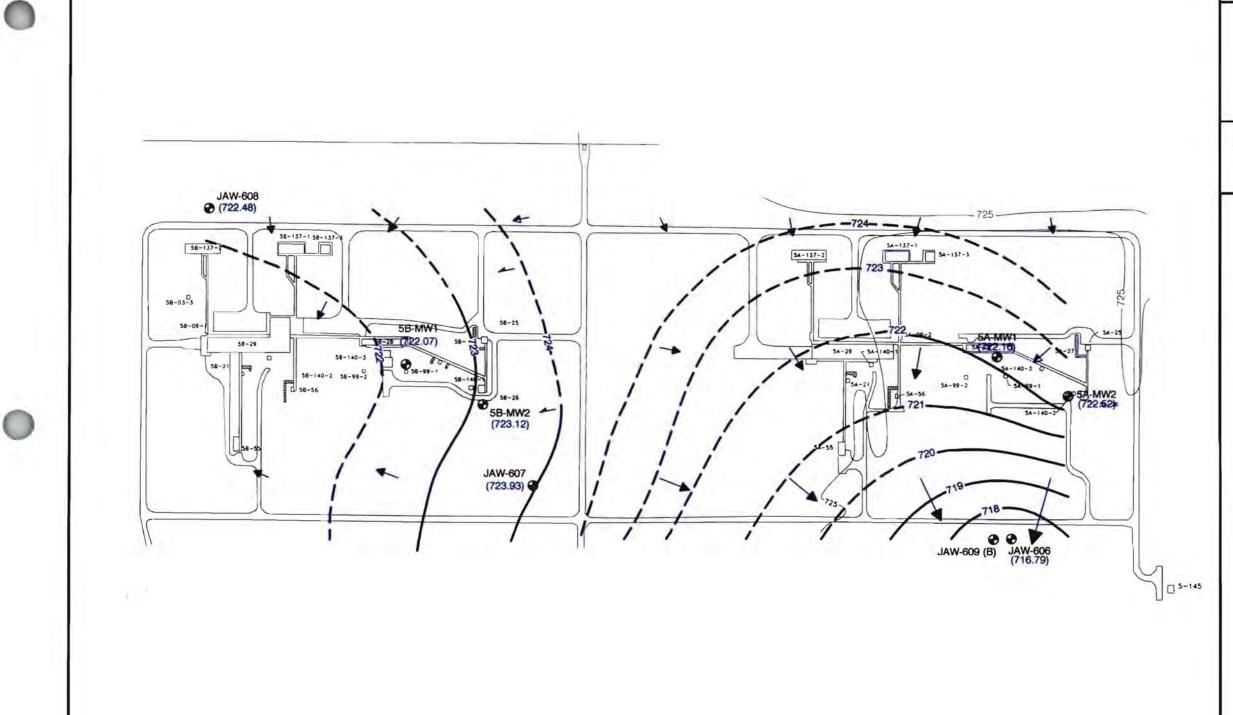

> Groundwater Potentiometric Surface (Contour Interval = 1 foot)

- Inferred Contour


Groundwater Flow Direction




Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_Shallow_Line3.dwg Project: KAN004-003-02-29 Created by: acarriger 09/23/02 Revised: 03/11/03/ tbraswell Map Source: URS


66

U.S. Army Corps of Engineers

HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa 69

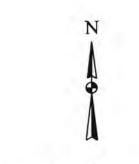
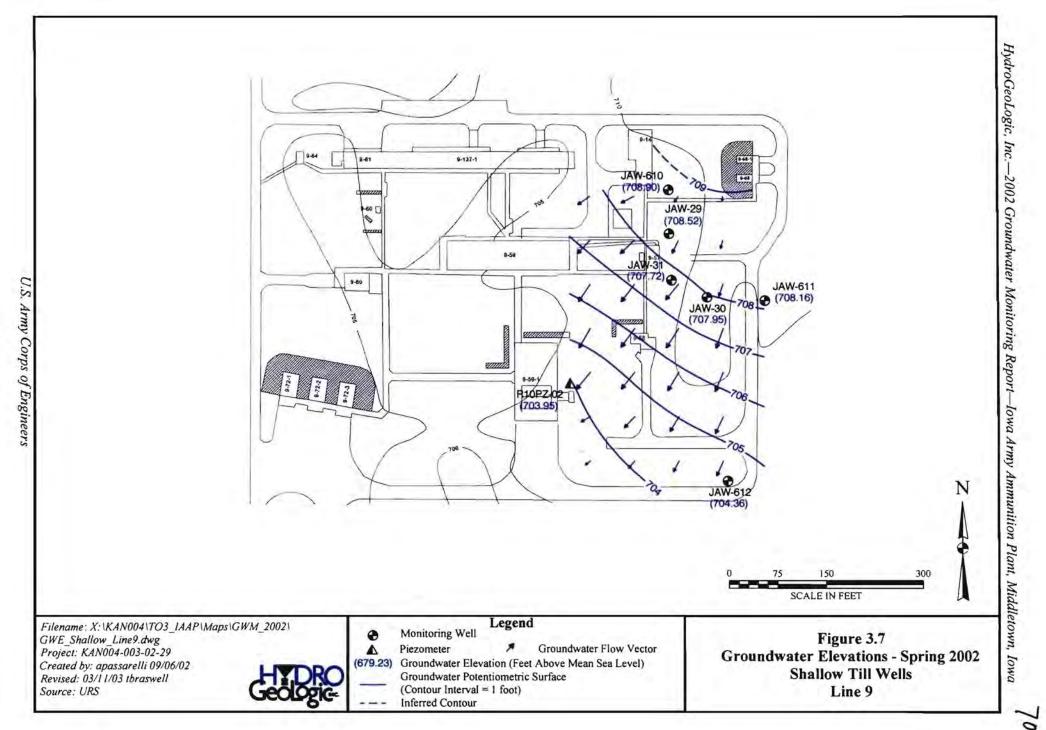

H.H

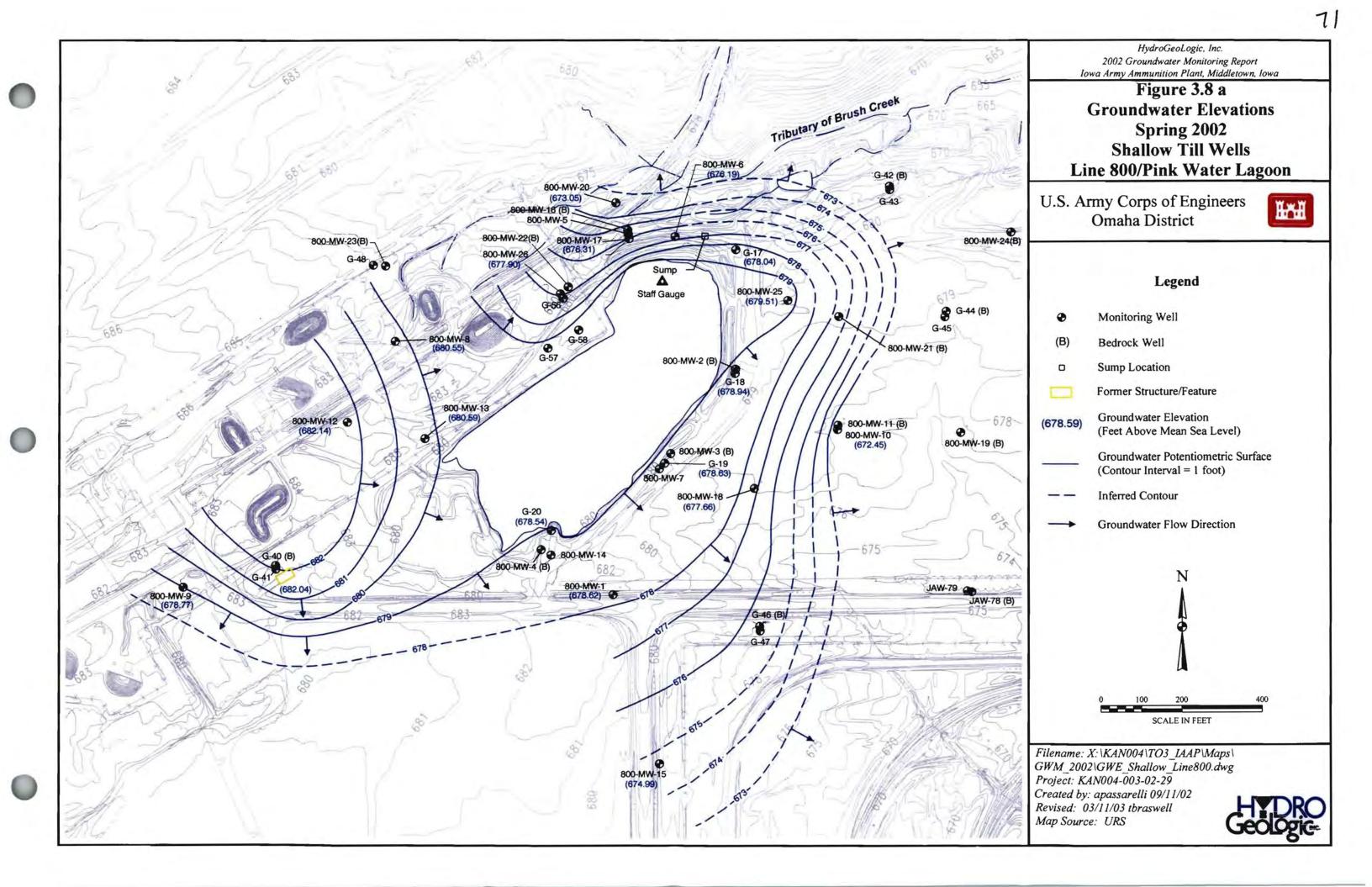
Figure 3.6 Groundwater Elevations Spring 2002 Shallow Till Wells Line 5A and 5B

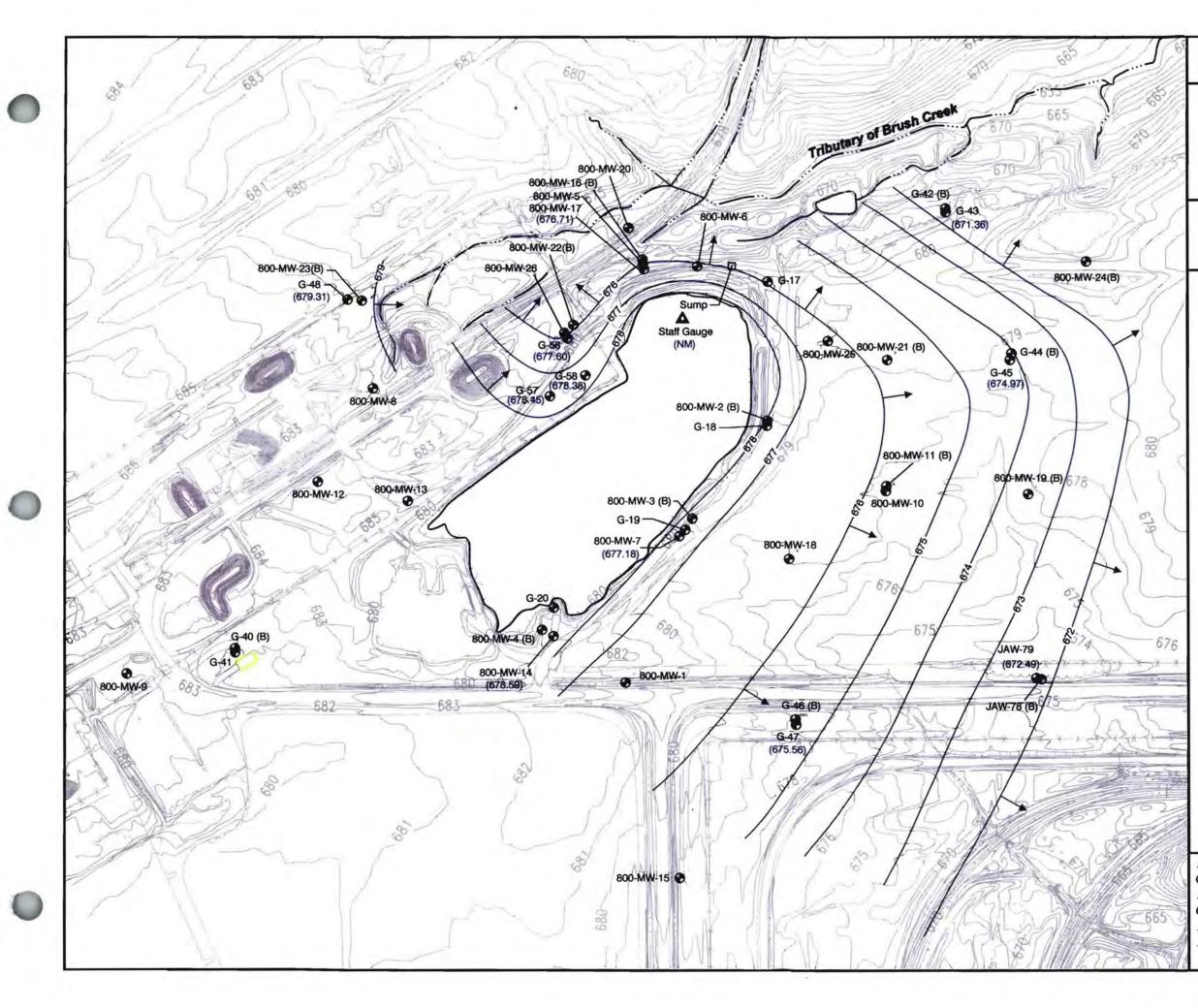
U.S. Army Corps of Engineers Omaha District

Legend

- Monitoring Well
- (B) Bedrock Well
- (723.93) Groundwater Elevation (Feet Above Mean Sea Level)
 - Groundwater Potentiometric Surface (Contour Interval = 1 foot)
- - Inferred Contour
 - Groundwater Flow Direction




SCALE IN FEET


600

Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_SHALLOW_LINE5.dwg Project: KAN004-003-02-29 Created by: 09/20/02 WFG Revised: 03/11/03 tbraswell Map Source: URS 2001

150

HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa 2

Ĩ. . I

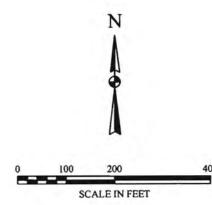
Figure 3.8 b Groundwater Elevations Spring 2002 Intermediate Till Wells Line 800/Pink Water Lagoon

U.S. Army Corps of Engineers Omaha District

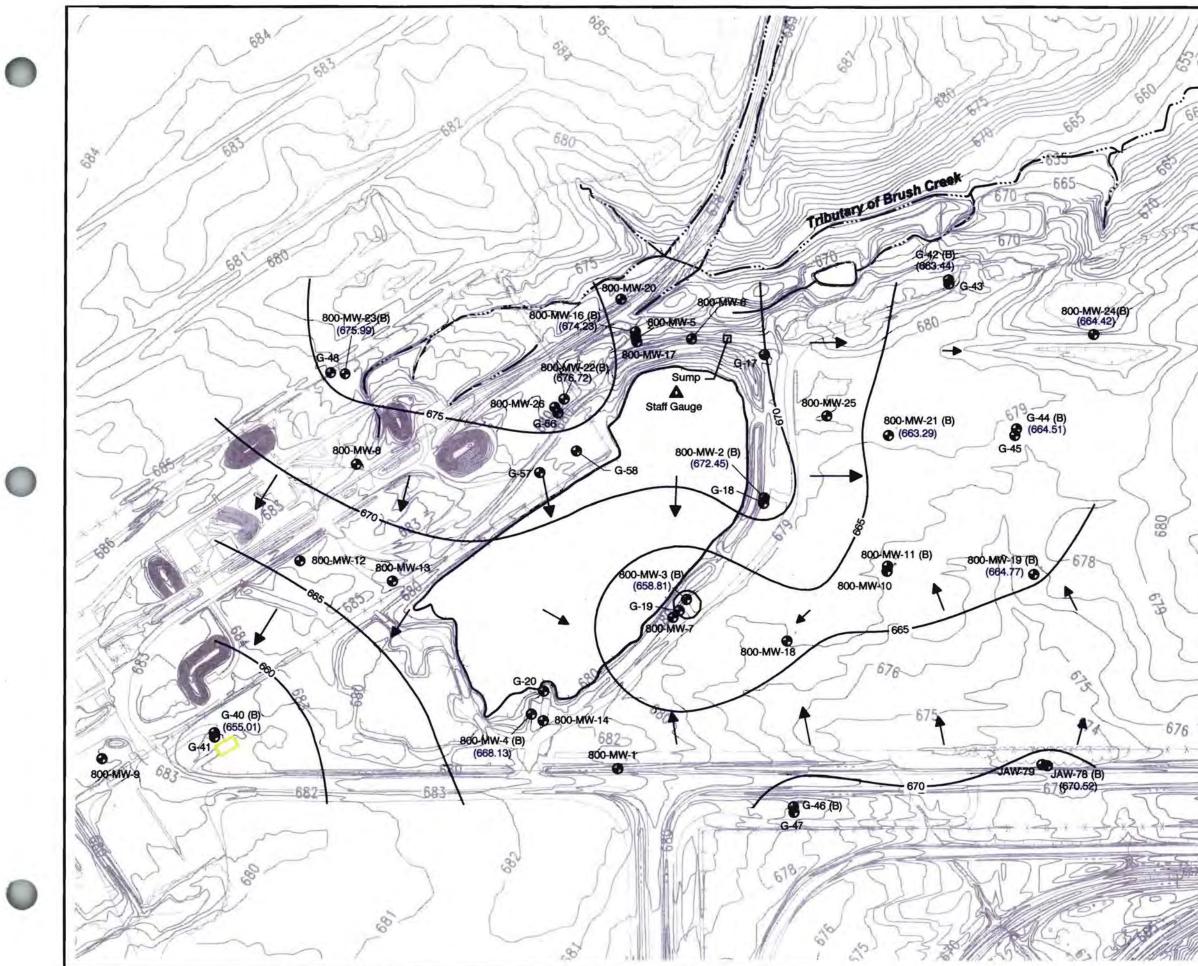
Legend

Monitoring Well

(B) Bedrock Well


Sump Location

Former Structure/Feature


(678.59) Groundwater Elevation (Feet Above Mean Sea Level)

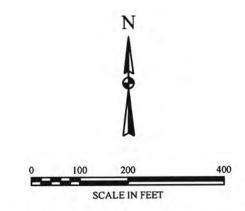
> Groundwater Potentiometric Surface (Contour Interval = 1 foot)

Groundwater Flow Direction

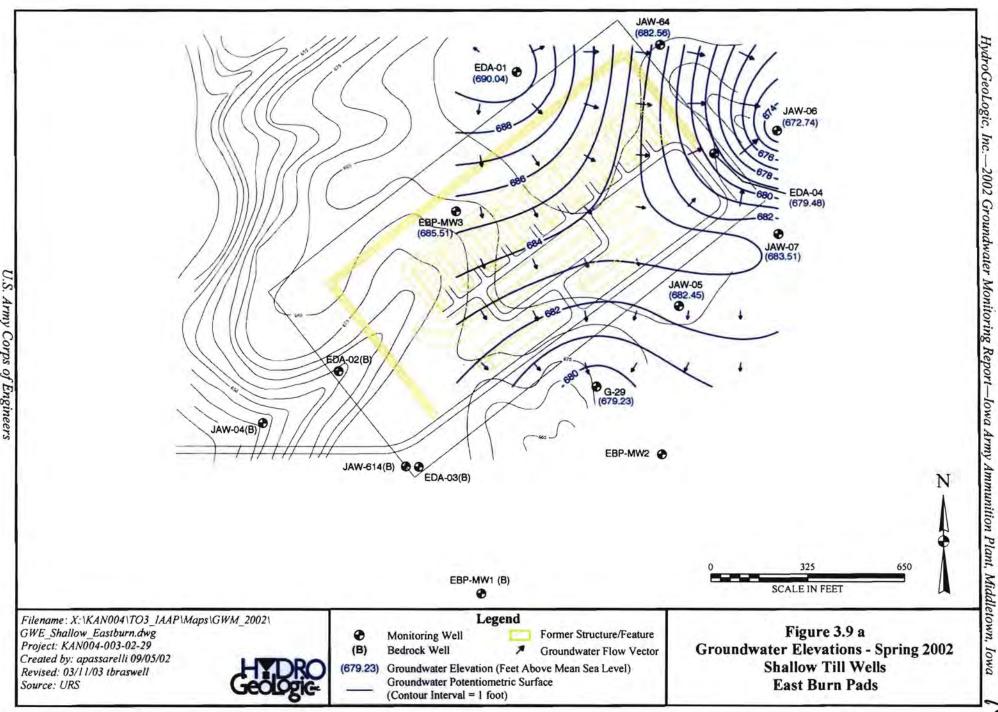
Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_Intermediate_Line800.dwg Project: KAN004-003-02-29 Created by: apassarelli 09/12/02 Revised: 03/11/03 tbraswell Map Source: URS

HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa 73

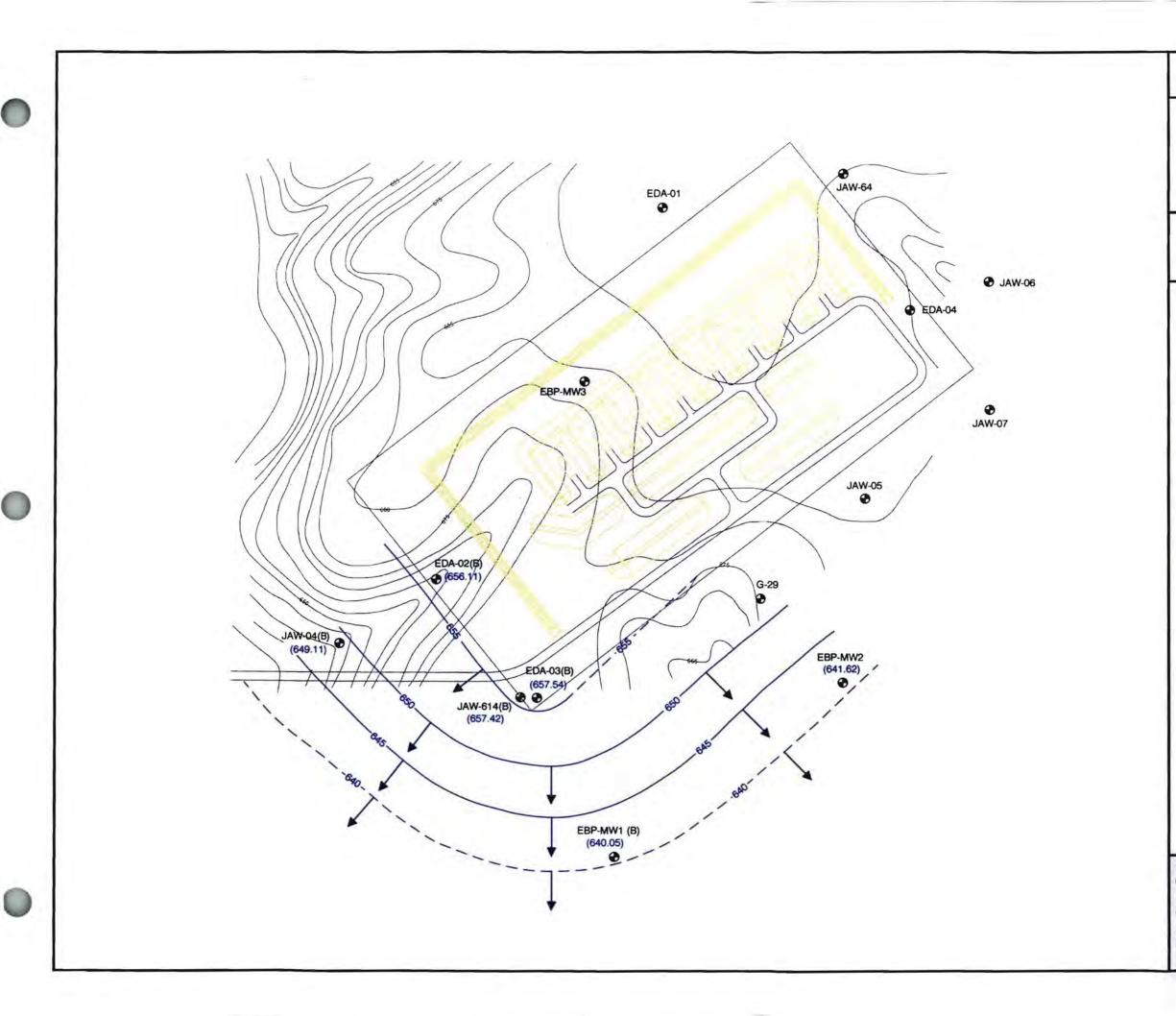
I. H


Figure 3.8 c Groundwater Elevations Spring 2002

Upper Bedrock and Bedrock Wells Line 800/Pink Water Lagoon


U.S. Army Corps of Engineers Omaha District

Legend


- Monitoring Well
- (B) Bedrock Well
- Sump Location
- Former Structure/Feature
- (663.44) Groundwater Elevation (Feet Above Mean Sea Level)
 - Groundwater Potentiometric Surface (Contour Interval = 5 feet)
 - → Groundwater Flow Vector

Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_Upperbed_Line800.dwg Project: KAN004-003-02-29 Created by: acarriger 09/23/02 Revised: 03/11/03 tbraswell Map Source: URS

U.S. Army Corps of Engineers

HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa 75

Ĩ

Figure 3.9 b Groundwater Elevations Spring 2002

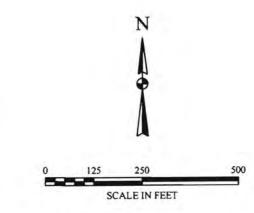
Basil Till, Upper Bedrock, and Bedrock Wells, East Burn Pads

U.S. Army Corps of Engineers Omaha District

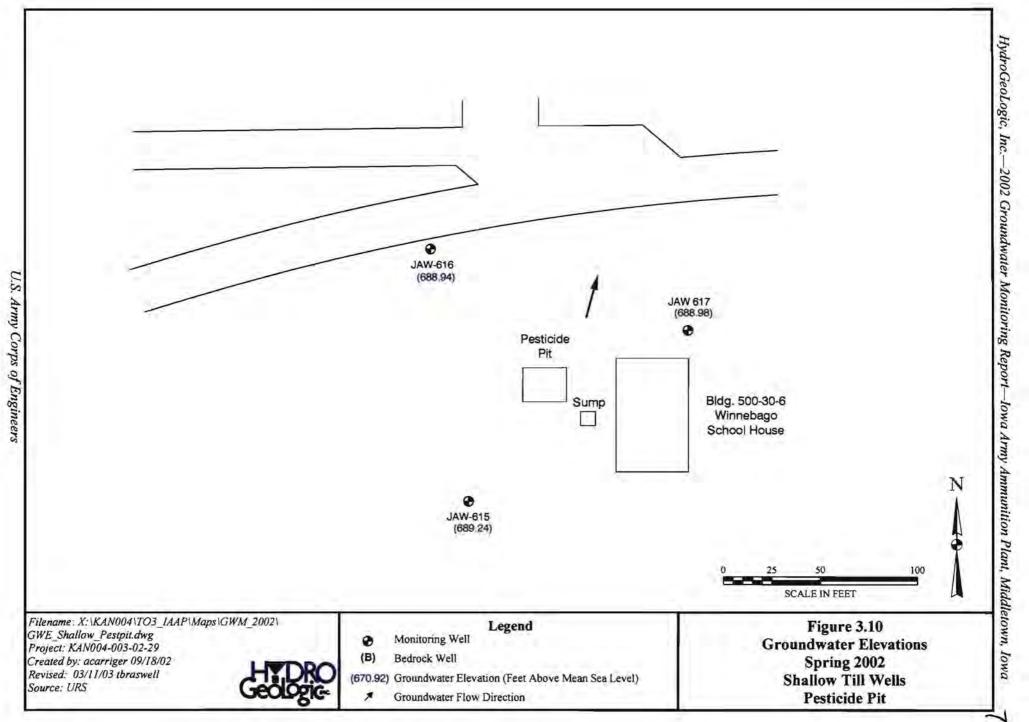
Legend

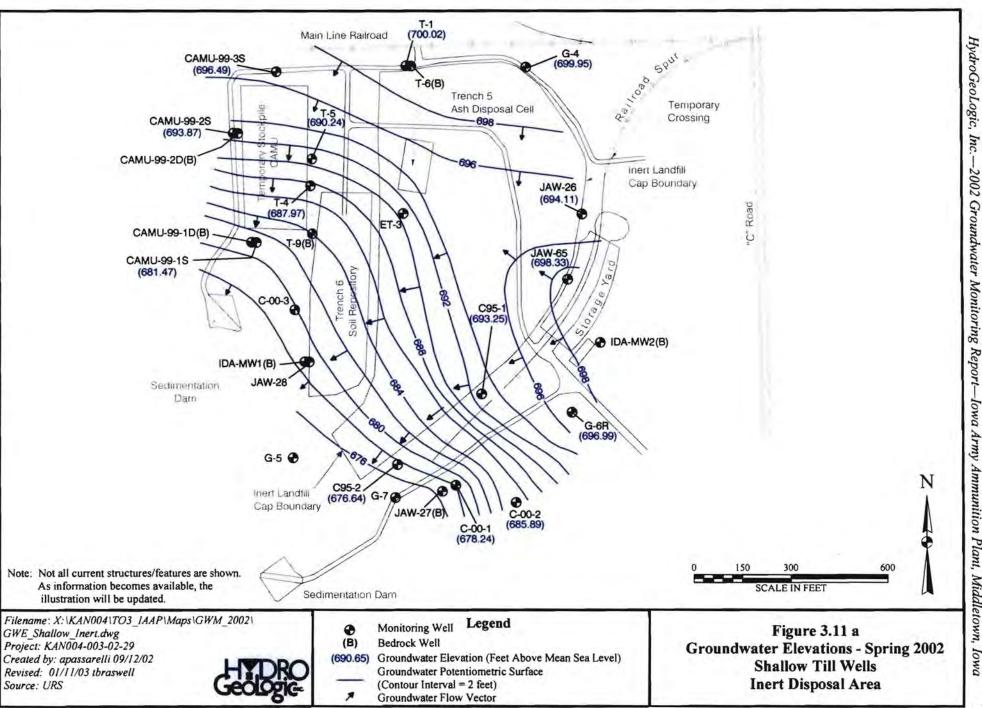
Monitoring Well

(B) Bedrock Well

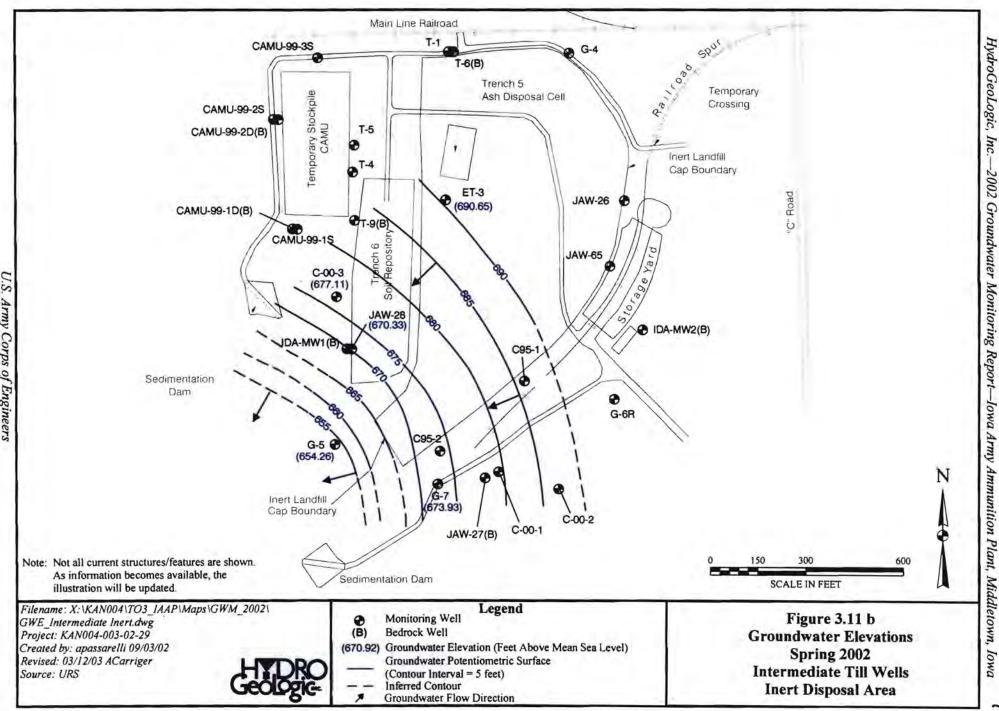

Former Structure/Feature

(678.59) Groundwater Elevation (Feet Above Mean Sea Level)

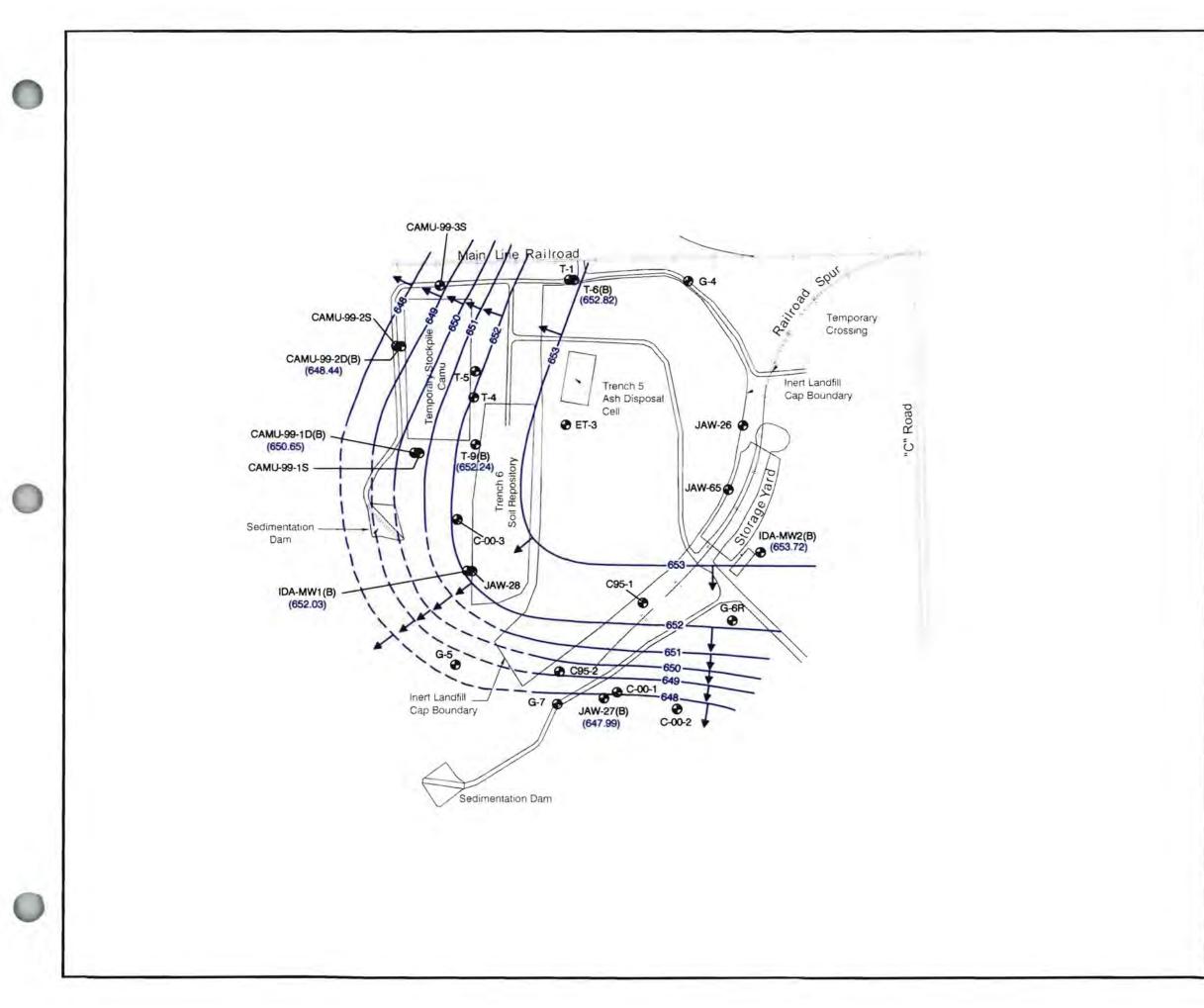

> Groundwater Potentiometric Surface (Contour Interval = 5 feet)

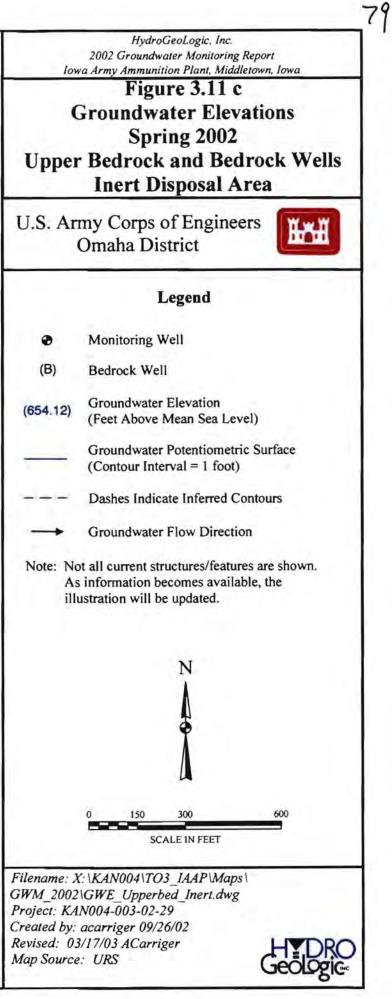

Inferred Contour

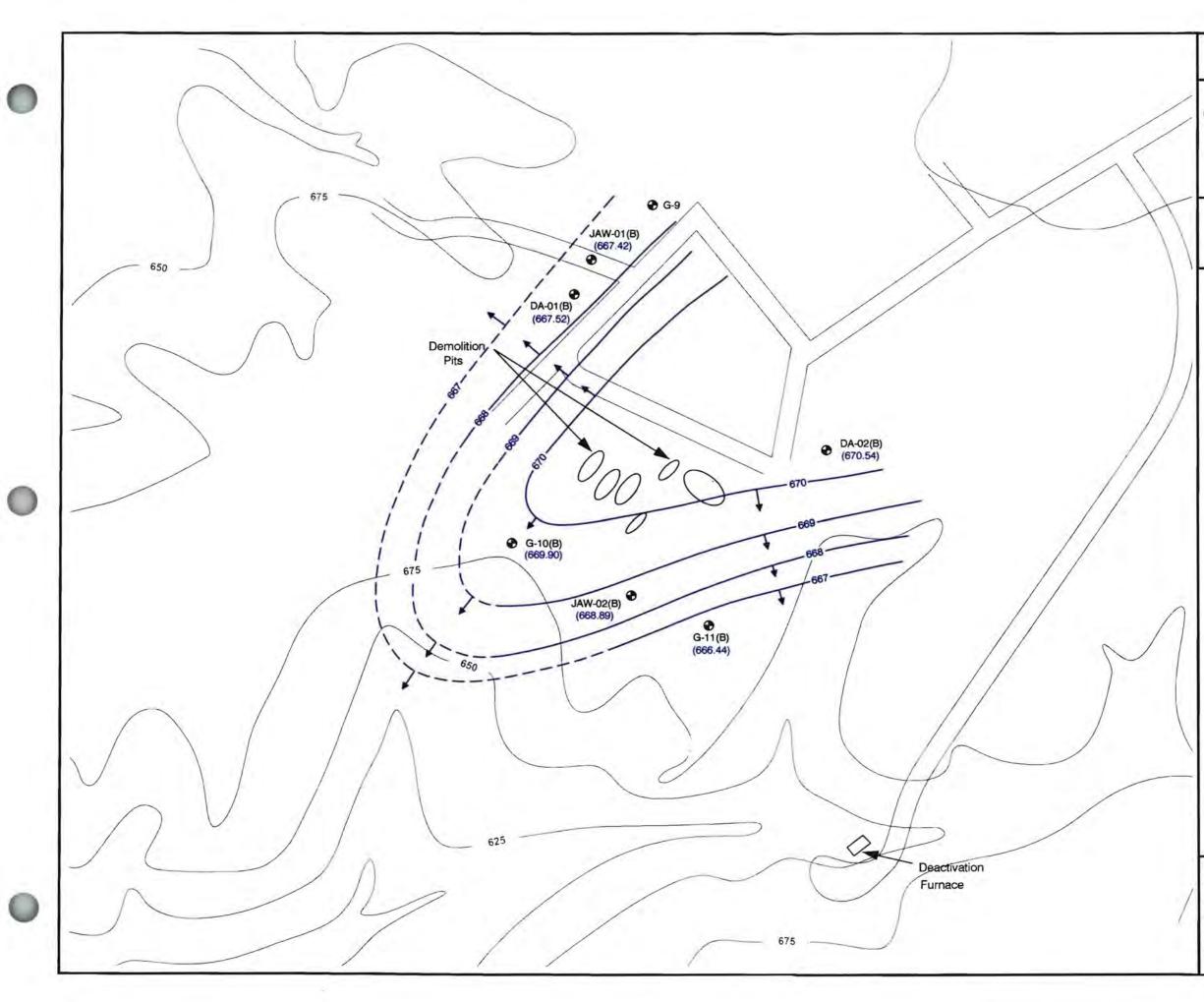
Groundwater Flow Direction



Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_Upperbed_Eastburn.dwg Project: KAN004-003-02-29 Created by: acarriger 09/19/02 Revised: 03/11/03 tbraswell Map Source: URS






Ammunition Plant, Middletown, Iowa

U.S. Army Corps of Engineers

HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa 80

H.

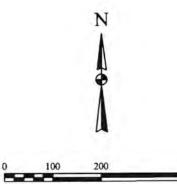
Figure 3.12 Groundwater Elevations - Spring 2002 Upper Bedrock Wells Demolition Area

and Deactivation Furnace

U.S. Army Corps of Engineers Omaha District

Legend

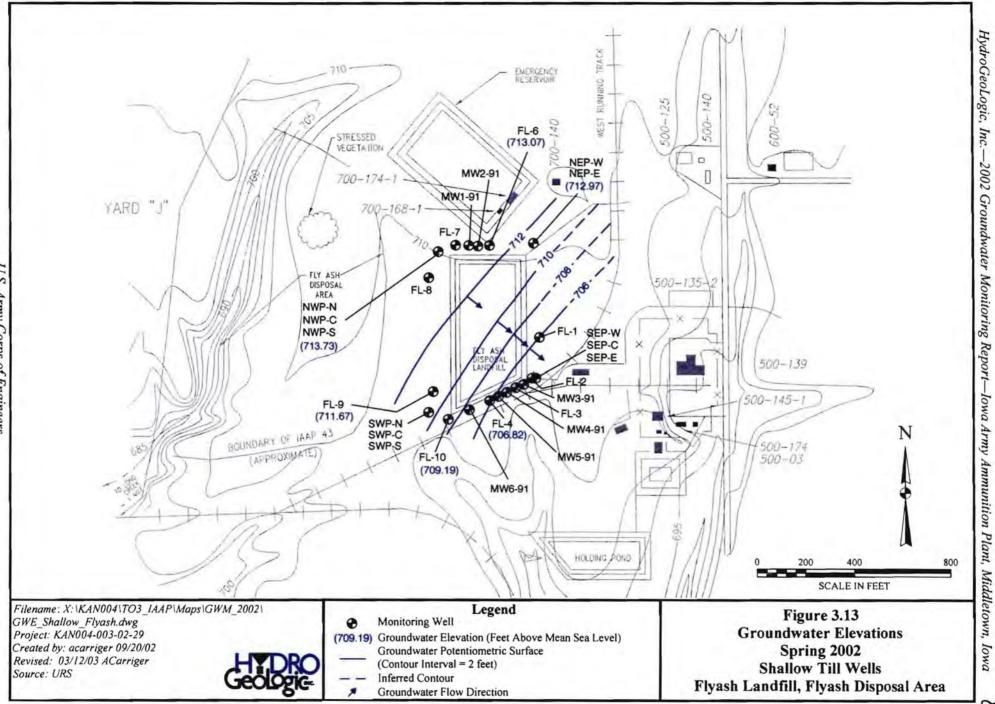
Monitoring Well


(B) Bedrock Well

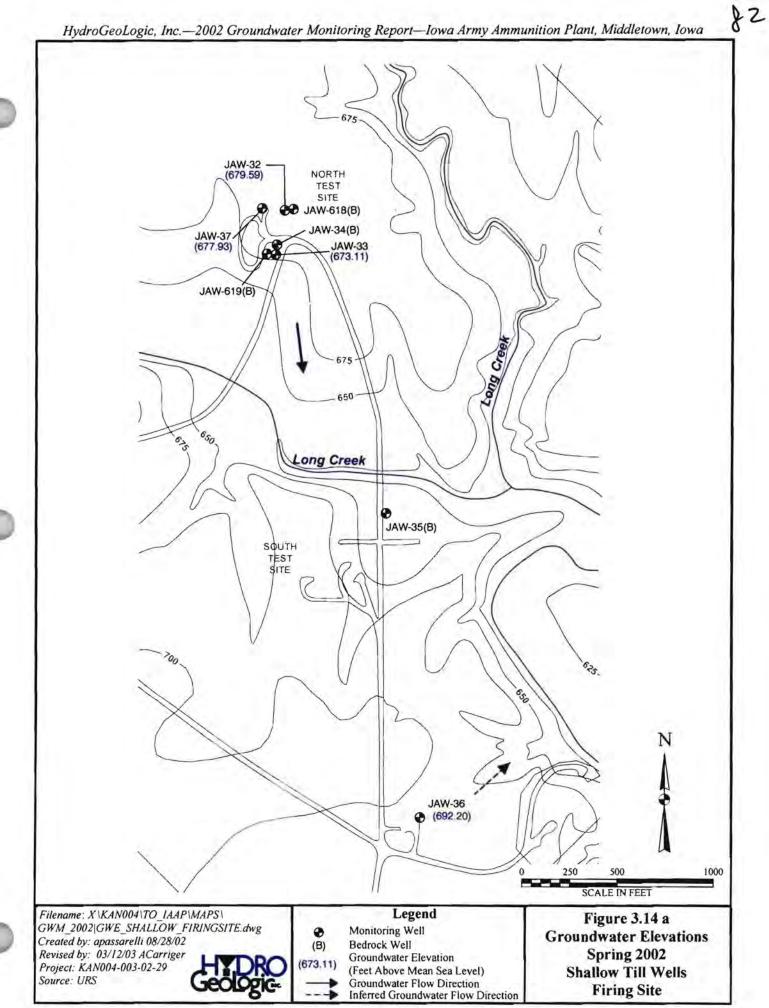
(678.59) Groundwater Elevation (Feet Above Mean Sea Level)

> Groundwater Potentiometric Surface (Contour Interval = 1 foot)

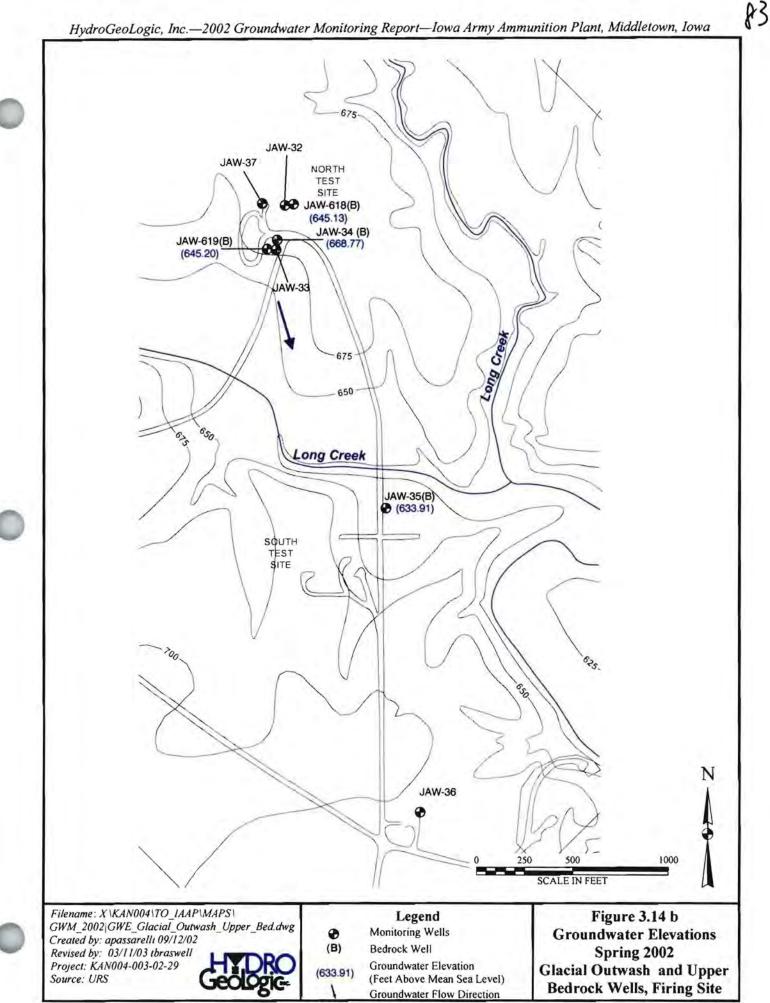
- - - Inferred Contour


Groundwater Flow Direction

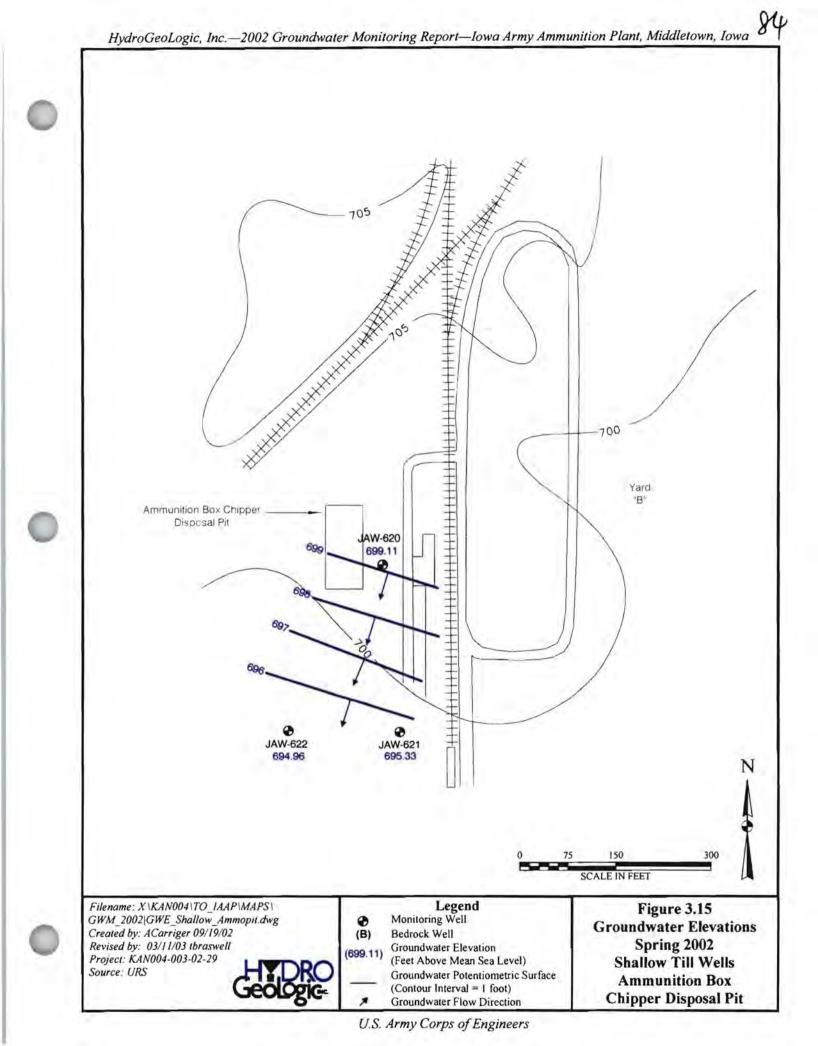
SCALE IN FEET

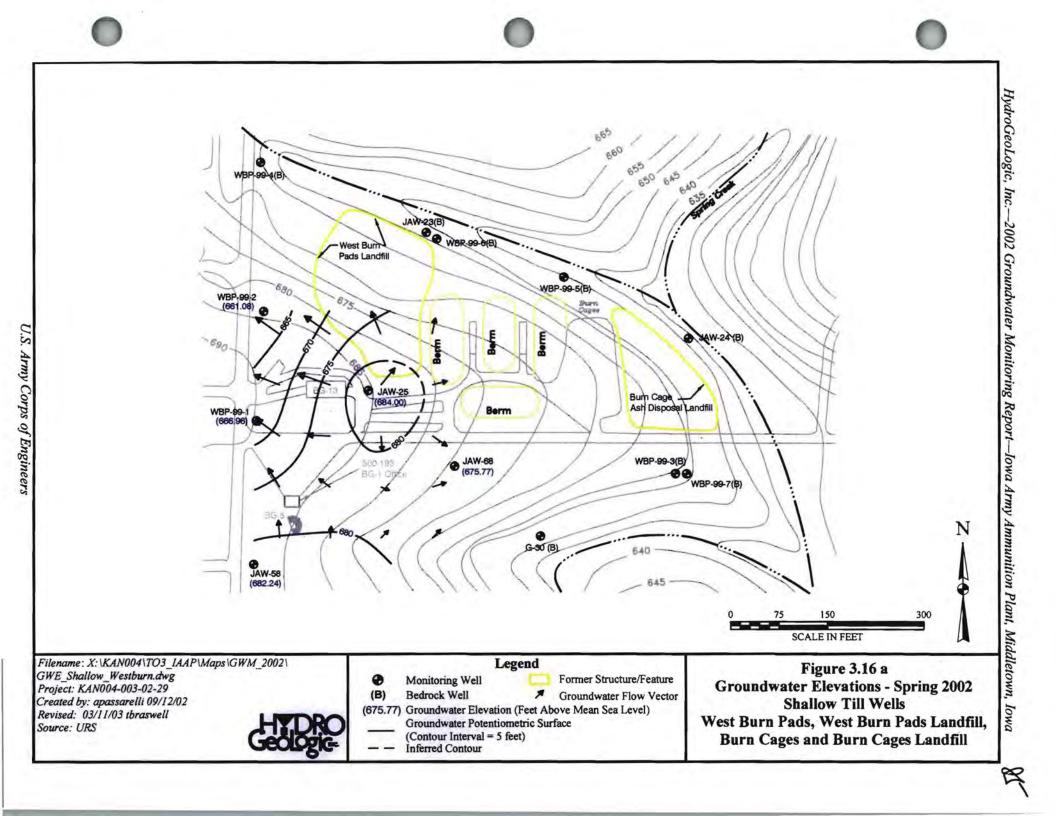

400

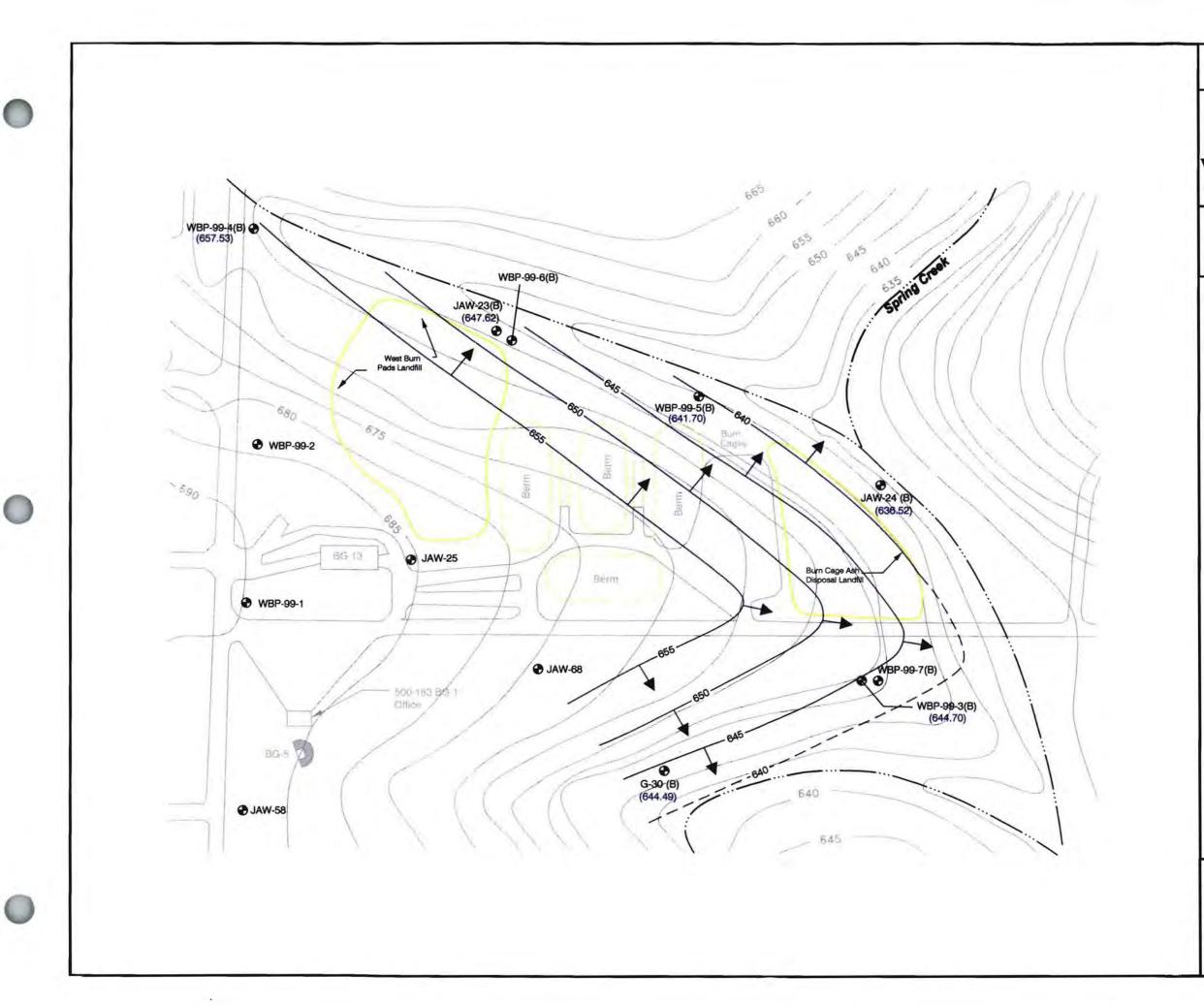
Filename: X:\KAN004\TO3_LAAP\Maps\ GWM_2002\GWE_Bedrock_Demo.dwg Project: KAN004-003-02-29 Created by: acarriger 09/19/02 Revised: 03/11/03 tbraswell Map Source: URS



U.S. Army Corps of Engineers


P




U.S. Army Corps of Engineers

U.S. Army Corps of Engineers

HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa 86

il di

Figure 3.16 b Groundwater Elevations - Spring 2002 Upper Bedrock Wells West Burn Pads, West Burn Pads Landfill, Burn Cages and Burn Cages Landfill

U.S. Army Corps of Engineers Omaha District

Legend

Monitoring Well

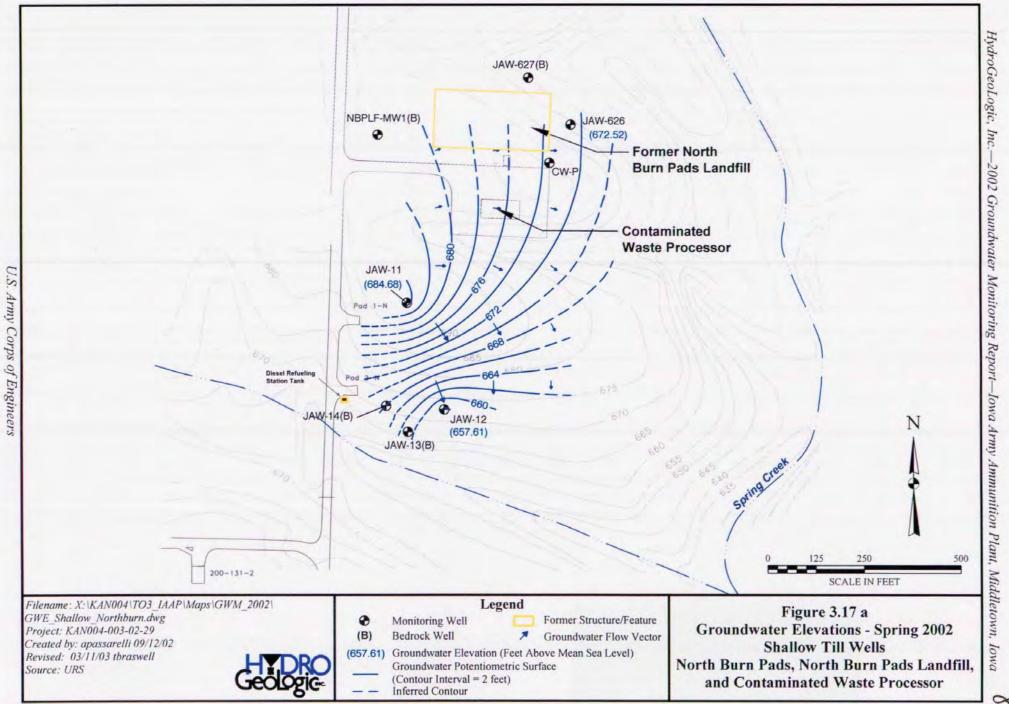
(B) Bedrock Well

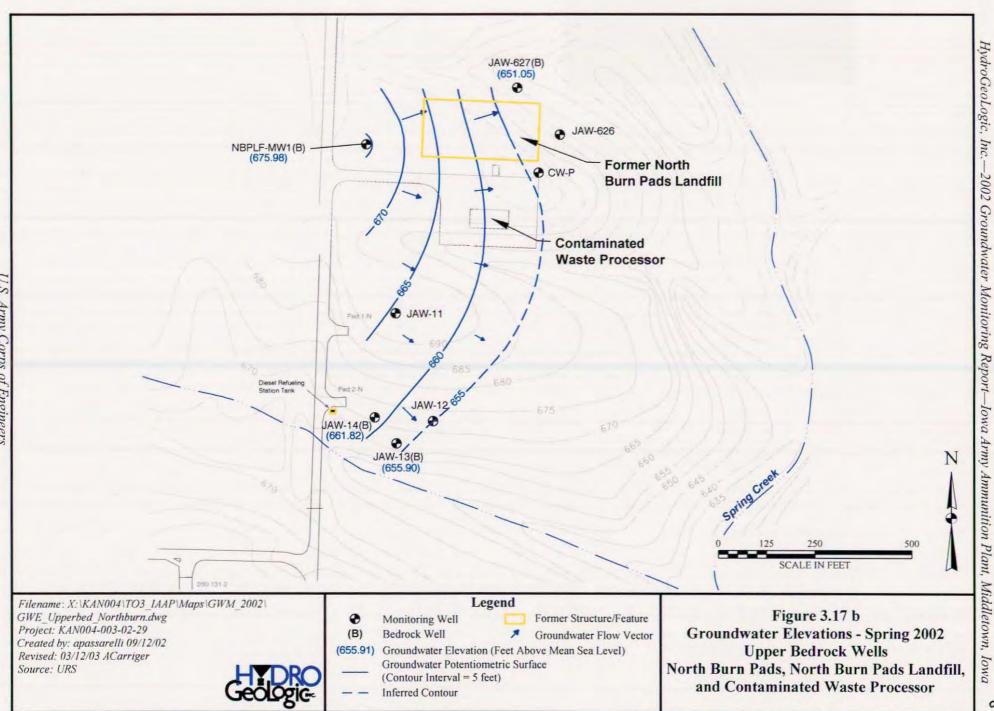
Former Structure/Feature

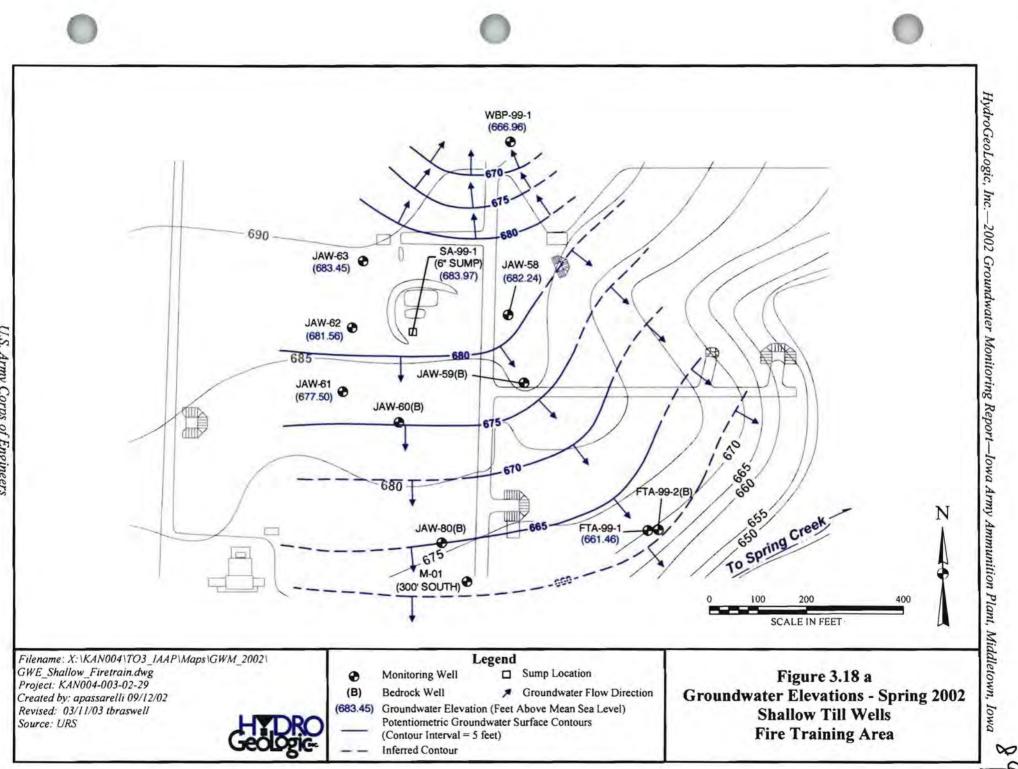
(708.16) Groundwater Elevation (Feet Above Mean Sea Level)

> Groundwater Potentiometric Surface (Contour Interval = 5 feet)

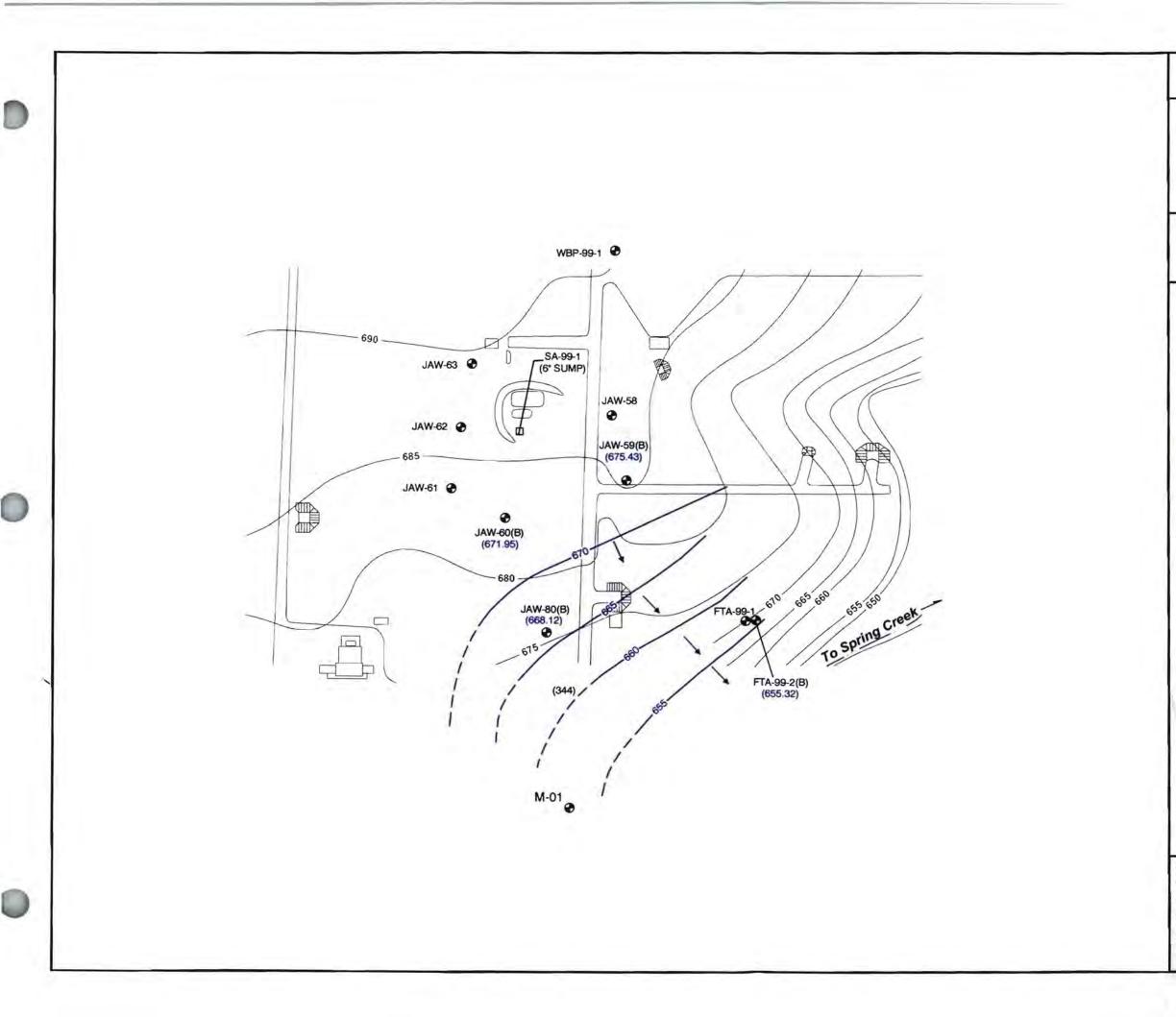
-- Inferred Contour


Groundwater Flow Direction


Topographic Contour



SCALE IN FEET


Filename: X:\KAN004\TO3_LAAP\Maps\ GWM_2002\GWE_Upperbed_Westburn.dwg Project: KAN004-003-02-29 Created by: apassarelli 09/12/02 Revised: 03/11/03 tbraswell Map Source: URS

U.S. Army Corps of Engineers

HydroGeoLogic, Inc. 2002 Groundwater Monitoring Report Iowa Army Ammunition Plant, Middletown, Iowa 90

Herei

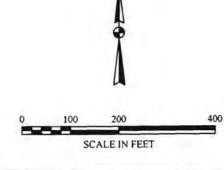
Figure 3.18 b Groundwater Elevations Spring 2002 Upper Bedrock Wells Fire Training Area

U.S. Army Corps of Engineers Omaha District

Legend

Monitoring Well

(B) Bedrock Well


Sump Location

(668.12) Groundwater Elevation (Feet Above Mean Sea Level)

> Groundwater Potentiometric Surface (Contour Interval = 5 feet)

Inferred Contour

Groundwater Flow Direction

N

Filename: X:\KAN004\TO3_IAAP\Maps\ GWM_2002\GWE_Upperbed_Firetrain.dwg Project: KAN004-003-02-29 Created by: acarriger 09/24/02 Revised: 03/11/03 tbraswell Map Source: URS

Section 4

4.0 CHEMICAL INVESTIGATION RESULTS

This section presents laboratory and field chemical data, data validation, and data review results for the Spring 2002 groundwater monitoring event at Iowa AAP.

4.1 SUMMARY OF ANALYTICAL RESULTS

Groundwater and surface water samples were submitted to Laucks for analysis of explosive compounds, VOCs, SVOCs, metals, radionuclides, total uranium, and natural attenuation parameters. Laucks subsequently submitted the radionuclide and total uranium samples to EnviroTest Laboratories of Casper, Wyoming, for analysis. When EnviroTest Laboratories closed, three radionuclide samples were later returned to Laucks and subsequently submitted to Severn-Trent Laboratories of Richland, Washington. Tables 4.1 through 4.23 summarize the detected analytical results for the groundwater and surface water samples collected during the Spring 2002 sampling event. A summary of all analytical results for groundwater and surface water samples collected at Iowa AAP is presented in Appendix B.

Perchlorate and RDX metabolite samples were collected during the Spring 2002 sampling event. Perchlorate samples were collected as part of a follow-up investigation to an independent EPA study conducted in 2000 and 2001, and were submitted for analysis to Laucks. The perchlorate results are discussed in Section 6.0. RDX metabolite samples were collected for an independent research study and analyzed by Lawrence Livermore Laboratory. The RDX metabolite results were not reported to HydroGeoLogic, and are not discussed in this report. However, the RDX metabolite MNX is included in the explosives analytical suite for the samples submitted to Laucks, and those results are discussed in this report.

4.1.1 Volatile Organic Compounds Detected in Groundwater

The primary VOCs detected in groundwater samples collected at Iowa AAP included 1,1,2trichloro-1,2,2-trifluoroethane (Freon 113) and acetone. Additional VOCs detected included: benzene, 2-butanone, chloroethane, chloroform, 1,1-dichloroethane (1,1-DCA), 1,1dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), ethylbenzene, dichlorodifluoromethane (Freon-12), 2-hexanone, 4-isopropyltoluene, methyl isobutyl ketone (MIBK), methylene chloride, tetrachloroethene (PCE), toluene, 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2trichloroethane (1,1,2-TCA), trichloroethylene (TCE), vinyl chloride, and xylene.

4.1.2 Semivolatile Organic Compounds Detected in Groundwater

The primary SVOC detected in groundwater samples collected at Iowa AAP was bis(2ethylhexyl)phthalate. Bis(2-ethylhexyl)phthalate is a common laboratory contaminant and is not considered a site-related contaminant at Iowa AAP. Additional SVOCs detected included benzoic acid, 2,4-dichlorophenol, 4-methylphenol, pentachlorophenol, phenol, and 2,4,5trichlorophenol.

Ъ.,

4-1

4.1.3 Explosive Compounds Detected in Groundwater

The primary explosive compounds detected in groundwater samples collected at Iowa AAP included RDX and cyclotetramethylenetetranitramine (HMX). Additional explosive compounds detected included MNX, 1,3,5-trinitrobenzene (1,3,5-TNB), 1,3-dinitrobenzene (1,3-DNB), 2,4,6-trinitrotoluene (2,4,6-TNT), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 2-amino-4,6-dinitrotoluene (2-Am-DNT), and 4-amino-2,6-dinitrotoluene (4-Am-DNT).

4.1.4 Metals Detected in Groundwater Samples

The primary metal analytes detected in groundwater samples collected at Iowa AAP included arsenic, barium, chromium, and lead. Other detected metals included cadmium, copper, manganese, mercury, nickel, selenium, silver, and vanadium.

4.2 DATA QUALITY REVIEW/VALIDATION PROCESS

The analytical data generated by the laboratory was checked for accuracy, precision, representativeness, comparability, and completeness. The data validation process for this project consisted of data generation, reduction, and two levels of review.

4.2.1 Laboratory Data Reduction and Validation

The first level of chemical data review, which contained multiple sublevels, was conducted by the analytical laboratory. The laboratory had the initial responsibility for the correctness and completeness of the data. Section 4 (Quality Control Project Plan [QAPP]) in the Iowa AAP Facility-Wide Work Plan (URS 2002a) identifies the laboratory reduction and validation processes.

4.2.2 HydroGeoLogic Data Review

The second level of chemical data review was completed by HydroGeoLogic. All of the analytical data were subjected to this review. The data review was completed following the procedures described below utilizing QA/QC criteria specified in the Iowa AAP Final Facility-Wide Work Plan, Section 4 - QAPP (URS 2002a), USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Inorganic Data Review, February 1994, and USEPA CLP National Functional Guidelines for Organic Data Review, October 1999. The QC parameters included in the review of the laboratory analytical data packages included the following:

- Completeness of data package
- Review of laboratory case narrative

P:\lowa AAP\GW Monitoring Report\Report Text\R09-02.877_SP02GWReport.doc

- Compliance with required holding times and sample preservation
- Presence or absence of compounds in method and field blanks
- Results of blank spike and blank spike duplicate samples

4-2

- Surrogate spike recovery in samples
- Results of matrix spike and matrix spike duplicate samples
- Field duplicate samples

4.2.3 HydroGeoLogic Data Validation

HydroGeoLogic completed full data validation on ten percent of the analytical data as defined in the project QAPP. The full validation of analytical data included reviewing all the parameters identified above and the additional parameters listed below:

- Initial calibration
- Continuing calibration
- Chromatogram review
- Standard preparation log review
- Sample preparation log review
- Run log review
- Sample result recalculation using the raw data
- Instrument tune
- Internal standards

Perchlorate analytical data did not receive a full validation on ten percent of the data. Instead, perchlorate results were subjected to a data review as outlined in Section 4.2.2. Internal laboratory control limits were used for the data review because perchlorate samples were added to the work plan after the QAPP had been developed and approved.

4.3 HYDROGEOLOGIC REVIEW/VALIDATION RESULTS

The data review process was implemented to assess the quality of data resulting from the field sampling program. The process determined whether the data meet the QA/QC objectives established for the project. Data were assessed to evaluate the appropriate usage to support decision making. Data assessment involved a consideration of data use, the decision type, identification of data that were qualified or did not meet project QA/QC requirements, and limitations on data use. The data review was based on the laboratory data summary reports and raw data. In some cases the laboratory reported data with qualifiers not listed in the National Functional Guidelines. The following table shows those laboratory qualifiers changed to make qualification conform to the National Functional Guidelines.

	Data Qualifiers	
Reason for Qualification	Laboratory Qualifier	HydroGeoLogic Qualifier
Detections below RL (metals only)	<u>B*</u>	J
Columns differ by $> 25\%$	Р	J
Serial dilution > 10% difference (metals only)	E	J
Detected result reported above calibrated range (organics only)	E	J

* See Section 4.3.1.4 for discussion of B qualifiers applied by the laboratory to organic results.

Note: In some cases these J qualifiers are superseded when there is a QC issue associated with the J-qualified result.

Table 4.29 summarizes all data that were qualified because results from the two analytical columns differed by more than 25%.

4.3.1 Laboratory Sample Delivery Groups

The following subsections summarize the review and validation of the analytical data for Laucks Laboratory sample delivery groups (SDGs). The SDGs were:

		Sample Delivery	Groups	
HYD01	HYD05	HYD09	HYD13	HYD17
HYD02	HYD06	HYD10	HYD14	IDA01
HYD03	HYD07	HYD11	HYD15	TRE01
HYD04	HYD08	HYD12	HYD16	TRE02

4.3.1.1 Data Package Completeness

The data packages were reviewed to verify that each SDG contained the data contractually required in the deliverable and that all samples listed on the chain-of-custody (COC) forms were analyzed for the requested parameters. The review indicated that the data packages were complete.

4.3.1.2 Laboratory Case Narrative

Problems identified by the laboratory in the case narratives for each SDG are discussed below.

SDG IDA01

The laboratory case narrative for IDA01 indicated that some samples were received at temperatures below the control limits of $4^{\circ} C \pm 2^{\circ} C$. None of the samples were frozen, so no corrective action was required. One volatile sample vial for TB052902 contained air bubbles of less than one-quarter inch in size. The other sample vial in the pair was used for analysis. The method blank for volatile analyses on 6/4/02 contained methylene chloride and acetone. All sample results associated with this method blank were flagged **B** by the laboratory. The SVOC initial calibration exceeded 40% relative standard deviation (RSD) for

hexachlorocyclopentadiene. The average % RSD for all compounds was less than 15% and all system performance check compounds (SPCCs) and calibration check compounds (CCCs) were in control. The calibration met the QAPP criteria and was accepted. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory.

SDG TRE01

The laboratory case narrative for TRE01 indicated that some samples were received at temperatures below the control limits of 4° C + 2° C. None of the samples were frozen, so no corrective action was required. Several volatile sample vials contained air bubbles of less than one-quarter inch in size. The other sample vials in each pair were used for analysis. The SVOC initial calibration exceeded 40% RSD for hexachlorocyclopentadiene. The average % RSD for all compounds was less than 15% and all SPCCs and CCCs were in control. The calibration met the QAPP criteria and was accepted. The SVOC continuing calibration standard analyzed on 6/13/02 exceed 40% difference (D) for benzoic acid. The minimum response factor was met and all SPCC and CCC compound were in control; therefore, no corrective action was required. HMX exceeded 15% D for some continuing calibration verifications (CCVs) on the confirmation column for explosives analyses. The average % D was less than 15% and HMX was in control for all analyses on the primary (quantitation) column. No corrective action was required. The matrix spike (MS) recovery for uranium for sample C-00-2 exceeded the upper control limit (UCL). A post-digestion spike was performed and the recovery also exceeded the UCL. The associated results were flagged N by the laboratory. The recovery in the blank spike sample for uranium exceeded the UCL. Uranium was not detected above the practical quantitation limit (PQL) in the associated samples; therefore, no corrective action was required.

SDG HYD01

S

The laboratory case narrative for HYD01 indicated that some samples were received at temperatures below the control limits of 4° C + 2° C. None of the samples were frozen, so no corrective action was required. Some volatile sample vials contained air bubbles of less than one-quarter inch in size. The method blank for volatile analyses on 6/5/02 contained All sample results associated with this method blank were flagged B by the acetone. The VOC CCV standard on 6/5/02 exceeded 40% D for 2-butanone. laboratory. The average %D for all compounds was less than 15% and all SPCCs and CCCs were in control. The calibration met the QAPP criteria and was accepted. The SVOC initial calibration exceeded 40% RSD for hexachlorocyclopentadiene. The average % RSD for all compounds was less than 15% and all SPCCs and CCCs were in control. The SVOC continuing calibration standard analyzed on 6/13/02 exceeded 40% D for benzoic acid. The minimum response factor was met and all SPCC and CCC compound were in control; therefore, no corrective action was required. One SVOC surrogate compound, 2-fluorophenol, yielded a recovery below the lower control limit for sample IDA-MW2. All other surrogates were in control. No corrective action was required. HMX exceeded 15% D for some CCVs on the confirmation column for explosives analyses. The average % D was less than 15% and HMX

U.S. Army Corps of Engineers-Omaha District

was in control for all analyses on the primary (quantitation) column. No corrective action was required. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory. One CCV standard exceeded the UCL for chloride, ortho-phosphate, and sulfate on 6/4/02. Only QC samples were associated with this standard. The relative percent difference (RPD) of recoveries in the matrix spike/matrix spike duplicate (MS/MSD) analyses for total Kjeldahl nitrogen (TKN) exceeded the UCL. The percent recoveries were within control limits.

SDG HYD02

The laboratory case narrative for HYD02 indicated that HMX exceeded 15% D for some CCVs on the confirmation column for explosives analyses. The average % D was less than 15% and HMX was in control for all analyses on the primary (quantitation) column. No corrective action was required. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory. The holding time for ortho-phosphate analysis was exceeded for sample Jaw-70. The initial calibration verification (ICV) standard for ortho-phosphate on 6/5/02 was out of control. All samples were reanalyzed on 6/7/02 to confirm the original results. One CCV standard exceeded the UCL for ortho-phosphate on 6/4/02. Ortho-phosphate was not detected above the PQL in the associated samples; therefore, no corrective action was required. The matrix spike recovery and MS/MSD RPD for ortho-phosphate were out of control on 6/5/02. The RPD of recoveries in the MS/MSD analyses for TKN exceeded the UCL on 6/14/02. The percent recoveries were within control limits.

SDG HYD03

The laboratory case narrative for HYD03 indicated that some samples were received at temperatures below the control limits of $4^{\circ} C \pm 2^{\circ} C$. None of the samples were frozen, so no corrective action was required. The SVOC continuing calibration standard exceeded 40% difference (D) for benzoic acid. The minimum response factor was met and all SPCC and CCC compound were in control; therefore, no corrective action was required. HMX or tetryl exceeded 15% D for some CCVs on the confirmation column for explosives analyses. The average % D was less than 15% and the analytes were in control for all analyses on the primary (quantitation) column. No corrective action was required. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory. Due to a spiking error, MS/MSD analyses for TKN exhibited low recoveries. No corrective action was taken.

SDG HYD04

54

The laboratory case narrative for HYD04 indicated that some samples were received at temperatures below the control limits of $4^{\circ} C \pm 2^{\circ} C$. None of the samples were frozen, so no corrective action was required. One of the volatile sample vials for TB061002 contained air bubbles of less than one-quarter inch in size. The other vial in the pair was analyzed. The VOC CCV standard on 6/12/02 exceeded 40% D for bromoform and the CCV on 6/17/02

U.S. Army Corps of Engineers—Omaha District

exceeded 40% D for 2-butanone and bromoform. The average % D for all compounds was less than 15% and all SPCCs and CCCs were in control. The calibration met the QAPP criteria and was accepted. The SVOC CCV standard analyzed on 6/20/02 exceeded 40% D for benzoic acid. The minimum response factor was met and all SPCC and CCC compounds were in control; therefore, no corrective action was required. HMX exceeded 15% D for some CCVs on the confirmation column for explosives analyses. The average % D was less than 15% and HMX was in control for all analyses on the primary (quantitation) column. No corrective action was required. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory. The final continuing calibration blank (CCB) for nitrate/nitrite analyses contained 0.5 μ g/L nitrate/nitrite. The associated sample was reanalyzed. The preparation blank for nitrate/nitrite on $\frac{6}{27}$ contained 0.1 micrograms per liter ($\mu g/L$) nitrate/nitrite. The associated sample did not contain nitrate/nitrite. The MS/MSD recoveries and RPD for sulfate were out of control on 6/14/02. The RPD for the MS/MSD analyses of ammonia on 6/12/02 and 6/28/02 and for nitrate/nitrite on 6/27/02 were out of control. All MS/MSD recoveries were within control limits for these analyses.

SDG HYD05

۱۰۰ ملات

The laboratory case narrative for HYD05 indicated that the VOC method blanks on 6/19/02 and 6/20/02 contained Freon 113. All associated samples were flagged B by the laboratory. The CCV standard on 6/17/02 exceeded 40% D for 2-hexanone and bromoform, and the CCVs on 6/19/02 and 6/20/02 exceeded 40% D for bromoform. The average % D for all compounds was less than 20% and all SPCCs and CCCs were in control. The calibration met the QAPP criteria and was accepted. Samples 800-MW-28 and G-20 exhibited excessive foaming and required dilution. HMX exceeded 15% D for some CCVs on the confirmation column for explosives analyses. The average % D was less than 15% and HMX was in control for all analyses on the primary (quantitation) column. No corrective action was required. The explosives analysis of sample M-01 exhibited high surrogate recovery due to matrix interference. No target analytes were found in this sample. One CCV standard exceeded the UCL for selenium on 6/24/02. Selenium was not detected in the associated samples. Due to operator error, one CCB for metals analysis was omitted. A preparation blank was analyzed immediately following where the CCB should have been. This preparation blank was free from contaminants and was accepted in the place of a CCB. The laboratory control sample (LCS) recovery of selenium was out of control. The LCS was reanalyzed with similar results; however the MS selenium recovery was in control. Nitrate/nitrite was detected in the preparation blank on $\frac{6}{27}$. In the associated samples, nitrate/nitrite either exceeded 20 times the concentration found in the blank or was not detected. The MS/MSD recoveries and RPD for sulfate were out of control on 6/14/02. The RPD for the MS/MSD analyses of ammonia on 6/28/02 and for nitrate/nitrite on 7/01/02 were out of control. All MS/MSD recoveries were within control limits for these analyses. The recovery of nitrate/nitrite in the MS on 6/27/02 was out of control.

U.S. Army Corps of Engineers—Omaha District

SDG HYD06

The laboratory case narrative for HYD06 indicated that some samples were received at temperatures below the control limits of 4° C $\pm 2^{\circ}$ C. None of the samples were frozen, so no corrective action was required. One total organic carbon (TOC) sample vial for JAW-13 was broken when it arrived at the laboratory. The other vial in the sample pair was analyzed HMX exceeded 15% D for the ICV and some CCVs on the confirmation column for explosives analyses. The average % D was less than 15% and HMX was in control for all analyses on the primary (quantitation) column. No corrective action was required. Samples JAW-15, JAW-20, JAW-21, and JAW-55 were received at the laboratory after the 48-hour holding time for ortho-phosphate had expired. The samples were analyzed immediately upon receipt. Two CCV analyses on 6/26/02 exhibited selenium recoveries above the UCL. The associated samples did not contain selenium above the PQL, so no corrective action was taken. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged **E** by the laboratory.

SDG HYD07

The laboratory case narrative for HYD07 indicated that some samples were received at temperatures below the control limits of 4° C + 2° C. None of the samples were frozen, so no corrective action was required. The method blank for volatile analyses on 6/19/02 contained Freon 113. All sample results associated with this method blank were flagged **B** by the laboratory. The VOC CCV standard on 6/19/02 exceeded 40% D for bromoform. The average % D for all compounds was less than 20% and all SPCCs and CCCs were in control. The calibration met the QAPP criteria and was accepted. HMX and tetryl exceeded 15% D for the ICV and some CCVs on the confirmation column for explosives analyses. The average % D was less than 15% and HMX and tetryl were in control for all analyses on the primary (quantitation) column. No corrective action was required. Sample G-30 was received at the laboratory after the 48-hour holding time for ortho-phosphate had expired. The sample was analyzed immediately upon receipt. Low internal standard area was exhibited for the LCS analysis of metals, which resulted in high recoveries. The matrix spike was within control limits. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory. Some CCV analyses exhibited selenium recoveries above the UCL. The associated samples did not contain selenium above the PQL, so no corrective action was taken.

SDG HYD08

1 *

14 1

The laboratory case narrative for HYD08 indicated that some samples were received at temperatures below the control limits of $4^{\circ} C \pm 2^{\circ} C$. None of the samples were frozen, so no corrective action was required. The method blank for volatile analyses on 6/20/02 contained Freon 113. All sample results associated with this method blank were flagged **B** by the laboratory. The VOC CCV standards on 6/20/02 and 6/21/02 exceeded 40% D for bromoform. The average % D for all compounds was less than 20% and all SPCCs and CCCs were in control. HMX exceeded 15% D for the ICV and some CCVs on the

U.S. Army Corps of Engineers-Omaha District

confirmation column for explosives analyses. The average % D was less than 15% and HMX was in control for all analyses on the primary (quantitation) column. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory. Some CCV analyses exhibited selenium recoveries above the UCL. The associated samples did not contain selenium above the PQL, so no corrective action was taken. The MSD recovery for ammonia on 6/28/02 was out of control. All other QC results were in control. The MS recovery and RPD for ammonia on 6/28/02 was out of 28/02 was out of

SDG HYD09

The laboratory case narrative for HYD09 indicated that one volatile sample vial for sample TB061902 contained air bubbles of less than one-quarter inch in size. The other vial in the sample pair was analyzed. The method blank for volatile analyses on 6/21/02 contained All sample results associated with this method blank were flagged \mathbf{B} by the acetone. The VOC CCV standards on 6/21/02 and 6/24/02 exceeded 40% D for laboratory. bromoform. The average % D for all compounds was less than 20% and all SPCCs and CCCs were in control. HMX exceeded 15% D for the ICV and some CCVs on the confirmation column for explosives analyses. Tetryl exceeded 15% D for some CCVs on the confirmation column for explosives analyses. The average % D for the ICV and all ICVs were less than 15% and HMX and Tetryl were in control for all analyses on the primary (quantitation) column. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory. Due to an integration error, the MS recovery and RPD for chloride were out of control. The MSD recovery and all other QC results were in control.

SDG HYD10

The laboratory case narrative for HYD10 indicated that sample ET-3 required dilution for perchlorate analysis, due to high levels of matrix interferences. The blank spike recovery was out of control. The recoveries of MS/MSD analyses were in control.

SDG HYD11

×4. -

The laboratory case narrative for HYD11 indicated that some samples were received at temperatures below the control limits of 4° C $\pm 2^{\circ}$ C. None of the samples were frozen, so no corrective action was required. The method blanks for volatile analyses on 7/01/02 and 7/03/02 contained acetone. All sample results associated with these method blanks were flagged **B** by the laboratory. The VOC CCV standards on 6/27/02, 6/28/02, and 7/01/02 exceeded 40% D for bromoform. The VOC CCV standard on 7/03/02 exceeded 40% D for bromoform. The VOC CCV standard on 7/03/02 exceeded 40% D for bromoform and 2-hexanone. The average % D for all compounds was less than 20% and all SPCCs and CCCs were in control. Some analytes exceeded 15% D for the ICV and some CCVs on the confirmation column for explosives analyses. The average % Ds for the analyses

U.S. Army Corps of Engineers—Omaha District

were all less than 15%. The explosives compound 2,6-DNT was out of control for the final CCV on the primary (quantitation) column, however the average % D was less than 15%. The surrogate recovery in sample JAW-610 exceeded the UCL. No analytes were detected in the sample. Cadmium in the interference check standard (solution A) was detected above the PQL. Cadmium was not detected above the PQL in the associated samples. The serial dilution for barium did not meet the original determination to within 10%. The associated results were flagged E by the laboratory. Both MS/MSD RPDs for ammonia on 7/05/02 were out of control. All other QC results, including the MS/MSD recoveries, were in control.

SDG HYD12

The laboratory case narrative for HYD12 indicated that both volatile sample vials for TB062702 contained air bubbles of less than one-quarter inch in size. The VOC CCV standard on 7/01/02 exceeded 40% D for bromoform. The VOC CCV standard on 7/03/02 exceeded 40% D for bromoform and 2-hexanone. The VOC CCV standard on 7/08/02 exceeded 40% D for bromoform and 2-butanone. The average % D for all compounds in these CCVs were less than 20% and all SPCCs and CCCs were in control. The method blanks for volatile analyses on 7/01/02, 7/03/02, and 7/8/02 contained acetone. All sample results associated with these method blanks were flagged **B** by the laboratory. The explosives compound 2,6-DNT was out of control for one CCV on the confirmation column, however the average % D was less than 15%. Due to an autosampler problem, MNX recovery in one CCV on the confirmation column was extremely low. All associated samples were subsequently reanalyzed to confirm MNX results from the primary column. The surrogate recovery in sample EBP-MW1 exceeded the UCL. No analytes were detected in the sample. Some CCV analyses exhibited cadmium and selenium recoveries above the UCL. The associated samples did not contain cadmium or selenium above the PQL, so no corrective action was taken. Cadmium in the interference check standard (solution A) was detected above the PQL. The associated samples did not contain cadmium or selenium above the PQL, so no corrective action was taken. On 7/10/02, the final CCV for nitrate/nitrite analyses exhibited a recovery below the lower control limit. Only QC samples were associated with this CCV, so no corrective action was taken. The nitrate/nitrite MS/MSD RPD was out of control. The recoveries were in control.

SDG HYD13

The laboratory case narrative for HYD13 indicated that some samples were received at temperatures below the control limits of $4^{\circ} C \pm 2^{\circ} C$. None of the samples were frozen, so no corrective action was required.

SDG HYD14

The laboratory case narrative for HYD14 indicated that some samples were received at temperatures below the control limits of $4^{\circ} C \pm 2^{\circ} C$. None of the samples were frozen, so no corrective action was required. Some volatile sample vials contained air bubbles of less than one-quarter inch in size. The method blank for volatile analyses on 7/10/02 contained methylene chloride. All sample results associated with this method blank were flagged **B** by

U.S. Army Corps of Engineers-Omaha District

102

the laboratory. Four explosives CCV standards exhibited % D values that exceed 15%. The average % D for each CCV was less than 15%. Samples 800-MW-29 and 800-MW-72 exhibited high surrogate recoveries for explosives analyses, due to matrix interferences. Samples 800-MW-6, 800-MW-17, 800-MW-27, 800-MW-18, and G-57 arrived at the laboratory after the 48-hour holding time for ortho-phosphate had expired. Additionally, the ortho-phosphate holding time for samples 800-MW-5, 800-MW-7, and G-4 expired before the samples could be analyzed. The first CCV analysis for chloride on 6/29/02 exceeded the UCL. The associated samples did not contain chloride above the PQL. The MS/MSD RPD for ammonia was out of control on 7/11/02. The MS/MSD recoveries were in control.

SDG HYD16

The laboratory case narrative for HYD16 indicated that some samples were received at temperatures below the control limits of 4° C + 2° C. None of the samples were frozen, so no corrective action was required. The method blank for volatile analyses on 7/10/02 contained methylene chloride. All sample results associated with this method blank were flagged **B** by the laboratory. The CCV standard for SVOC analyses on 7/09/02 exceeded 40% D for benzoic acid and 2,2'-oxybis(1-chloropropene). The minimum response factor was met and all SPCC and CCC compound were in control, therefore no corrective action was required. The explosives compound 2,6-DNT was out of control for one CCV on the confirmation column; however, the average % D was less than 15%. Due to an autosampler problem, MNX recovery in one CCV on the confirmation column was extremely low. All associated samples were subsequently reanalyzed to confirm MNX results from the primary column. Some CCV analyses exhibited cadmium and selenium recoveries above the UCL. The associated samples did not contain cadmium or selenium above the PQL, so no corrective action was taken. Cadmium in the interference check standard (solution A) was detected above the PQL. Sample G-47 arrived at the laboratory after the 48-hour holding time for orthophosphate had expired. The RPD for MS/MSD analyses of ammonia on 7/11/02 was out of control. The MS/MSD recoveries were in control.

SDG HYD17

1.4

-1 -

The laboratory case narrative for HYD17 indicated that some samples were received below the control limits of 4° C $\pm 2^{\circ}$ C. None of the samples were frozen, so no corrective action was required. The recovery of uranium in the LCS was out of control; however, the MS recovery was in control.

4.3.1.3 Holding Times and Sample Preservation

Review of the sample collection and analyses dates involved comparing the COCs, the chemical results summary forms, and the raw data forms for accuracy, consistency, and compliance with holding times. All samples were extracted and analyzed within the required holding time criteria with the exception of ortho-phosphate. Some ortho-phosphate samples were extracted one to two days outside the method recommended extraction criteria.

U.S. Army Corps of Engineers—Omaha District

Additionally, four explosives samples were identified as having heavy matrix interference effects during the data review process. At HydroGeoLogic's request, the laboratory reanalyzed the original sample extracts outside of holding times. The initial analysis of these samples occurred within holding times. Data qualifications based on outlying holding time criteria are presented in Table 4.24.

4.3.1.4 Blank Samples

Same

Blank samples were analyzed to determine whether any contamination was introduced into the samples during laboratory activities. Results for nine analytes were qualified in one or more samples due to blank contamination. Data qualifications based on the blank contamination are presented in Table 4.25.

The method blank analyzed on 7/10/02 contained 0.66 μ g/L methylene chloride contamination. The methylene chloride peak area count in this blank was 8451. One of the associated samples, WBP-99-6, contained 0.69 μ g/L methylene chloride contamination in the raw chromatogram, with a peak area count of 9141. The similarity in peak area counts between the method blank and the field sample indicate that the methylene chloride contamination in the field sample is attributable to laboratory contamination. Sample WBP-99-6 was analyzed at a dilution factor of 10,000 due to the presence of a significant amount of Freon 113. Due to the large dilution factor, the final methylene chloride result was reported as 6,900 μ g/L by the laboratory, with J and B qualifiers. The J qualifier indicated that the result was below the dilution-adjusted reporting limit of 30,000 μ g/L. The B qualifier indicated that the compound was also present in the blank. The methylene chloride result for WBP-99-6 was qualified U by the HydroGeoLogic chemist during the data review process, in accordance with CLP National Functional Guidelines for Organic Data Review.

A sample of source water to be used for field decontamination procedures was collected and analyzed for VOCs, SVOCs, and explosives during the Spring 2002 sampling event. Acetone and three trihalomethanes were detected in the water source sample; however, no qualifications of data were required based on the contamination. Acetone is a common laboratory contaminant and trihalomethanes are by-products of the potable water disinfection processes. All explosives and SVOCs were reported as non-detects in the source sample; therefore, no qualifications were required based these results on source blank contamination.

One rinsate sample was collected and analyzed for VOCs, SVOCs, and explosives during the Spring 2002 sampling event. Acetone and three trihalomethanes were detected in the rinsate samples; however, no qualifications were required based on the contamination. The rinsate samples were reported as not detected for all explosives and SVOCs; therefore, no qualifications were required based on rinsate contamination.

4.3.1.5 Surrogate Compound Percent Recoveries

Surrogate recoveries were used to evaluate the accuracy of the analytical measurement on a sample-specific basis. Surrogate recoveries for all samples were either within evaluation

criteria or did not require the qualification of any results, with the exceptions noted in the table at the end of this section.

For SVOC analyses, USEPA CLP National Functional Guidelines for Organic Data Review state that two or more surrogates of the same fraction must be outside criteria or one surrogate must exhibit a recovery value of less than 10% to require qualification. In sample IDA-MW2, the 2-fluorophenol recovery was 8%. No acid fraction compounds were detected; therefore, all acid fraction results were qualified **R** and should be considered rejected.

Samples 800-MW-5Dup, G-18Dup, and their respective parent samples exhibited high levels of target analytes and matrix interferences. During the data review process, significant differences were noted between the results from the primary (C18) column and the confirmation column (CN). Poor peak shape, an indicator of possible matrix interference, was noted on the raw chromatograms. At HydroGeoLogic's request, the laboratory reanalyzed the sample extracts outside of holding times. Reanalysis resulted in better resolution of target compounds. Results from the reanalysis were qualified J/UJ, because they exceeded holding times, but are considered valid for the purposes of this report.

SDG #	Site ID	Method	Field ID	Analyte	Qualification
HYD01	Inert Disposal Area	8270	IDA-MW2	SVOC acid-fraction compounds	R
HYD14	Line 800	8330	800-MW-05Dup	All explosive compounds	J/UJ
HYD14	Line 800	8330	G-18Dup	All explosive compounds	J/UJ

4.3.1.6 Laboratory Control Samples

Laboratory control samples (LCS) were analyzed to assess the accuracy of the analytical method and demonstrate laboratory performance. LCS recoveries were all within the evaluation criteria with the exception of arsenic (HYD07), barium (HYD07), chromium (HYD07), perchlorate (HYD10), selenium (HYD05 and HYD07), and SVOC compounds (HYD03). Data qualifications based on outlying LCS recoveries are presented in Table 4.26.

4.3.1.7 Field Duplicate Analysis

Field duplicate sample pairs were established to determine both field and laboratory precision. Thirteen groundwater field duplicate sample pairs and two surface water field duplicate sample pair were collected and submitted to the laboratory for analysis. The field duplicate sample pairs are presented in the table below:

Field Duplicate Sample Pairs Spring 2002				
Site ID	Original Sample ID	Duplicate Sample ID (Laboratory)	Duplicate Sample ID (Report)	
Line 2	JAW-70	L2-MW4	JAW-70Dup	
Line 3	JAW-54	L3-MW1	JAW-54Dup	
Line 9	JAW-612	L9-MW1	JAW-612Dup	
Line 800	G-18	800-MW-27	G-18Dup	
Line 800	G-20	800-MW-28	G-20Dup	
Line 800	800-MW-5	800-MW-29	800-MW-5Dup	
East Burn Pad	EDA-03	EBP-MW4	EDA-03Dup	
East Burn Pad	EDA-04	EBP-MW-5	EDA-04Dup	
Inert Disposal Area	IDA-MW1	IDA-MW3	IDA-MW1Dup	
Firing Site	JAW-618	JAW-100	JAW-618Dup	
West Burn Pad	WBP-99-2	WBP-99-8	WBP-99-2Dup	
North Burn Pad LF	JAW-627	NBPLF-MW2	JAW-627Dup	
Long Creek	LC1	LC3	LC1Dup	
Spring Creek	SCT2	SCT4	SCT2Dup	
Trench 5 (IDA)	C95-1	C95-3	C95-1Dup	

Field duplicate sample pair results were within evaluation criteria (25 percent) for all duplicate sample pairs with the exceptions and data qualifications presented in the table below. Analytical results for the field duplicate sample pairs are presented in Table 4.27.

Duplicate Sample Pairs Outside Evaluation Criteria Spring 2002			
Site ID	Field ID	Analyte	Qualification
Line 2	JAW-70	4-Amino-2,6-dinitrotoluene	J
Line 3	JAW-54	НМХ	J
		RDX	J
		Alkalinity	J
		Carbon Dioxide	J
Line 9	JAW-612	Ammonia	J/UJ
Line 800	800-MW-05	1,3-Dinitrobenzene	J
West Burn Pad	WBP-99-02	HMX	J
		RDX	J
		Sulfide	J
		1,1,1-Trichloroethane	J

4.3.1.8 Quality Assurance Analysis

Quality assurance split samples were collected to determine laboratory accuracy and precision. Eight groundwater samples were collected and submitted to a secondary laboratory (USACE Environmental Chemistry Branch) for analysis and comparison. The QA split samples are listed in the table below:

Quality Assurance Sample Pairs Spring 2002			
Site ID	Original Sample ID	QA Split Sample ID	
Line 2	JAW-70	JAW-70	
Line 800	800-MW-5	800-MW-5	
East Burn Pad	EDA-04	EDA-04	
West Burn Pad	WBP-99-2	WBP-99-2	
Fire Training Area	SA-99-1	SA-99-1	
Fire Training Area	JAW-61	JAW-61	
Fire Training Area	FTA-99-1	FTA-99-1	
Line 5A and 5B	5A-MW1	5A-MW1	

The USACE places the quality assurance sample evaluations into three categories: major discrepancy, minor discrepancy, or data agreed. Major discrepancies for groundwater are defined as RPDs greater than five times the QA split sample result. Minor discrepancies for groundwater are defined as normalized relative amounts that are less than or equal to five times the split sample result and greater than or equal to two times the split sample result. Data results categorized as agreed are defined as normalized relative amounts of less than two times the split sample result. Table 4.27 presents the data comparison of the original samples and the quality assurance samples.

4.3.1.9 Matrix Spike/Matrix Spike Duplicate Analysis

MS/MSD samples were analyzed to assess laboratory accuracy and the effects of matrix inferences on sample preparation and analyses. Eight groundwater samples and three surface water samples were collected and submitted to the laboratory to be spiked and analyzed with their respective SDGs.

Matrix Spike/Matrix Spike Spring 200	
Site ID	Original Sample ID
Line 1	JAW-602
Line 3	JAW-57
Line 800	G-44
East Burn Pad	EBP-MW2
Inert Disposal Area	CAMU-99-1S

Matrix Spike/Matrix Spike Spring 200	
Site ID	Original Sample ID
Spring Creek	SCT2
West Burn Pads	JAW-68
Plant Boundary and General Area	G-27

Table 4.28 identifies the MS/MSD samples with outlying recoveries.

The CLP guidelines indicate that organic data should not be qualified based on MS/MSD results alone. Because sample surrogate recoveries and associated LCS recoveries were within criteria, no qualification of VOCs or explosives data was required based on outlying MS/MSD recoveries. The recoveries of four SVOCs in either the MS or MSD analyses of sample EBP-MW2 exceeded the QAPP control limits. In the judgment of the HydroGeoLogic reviewer, the multiple discrepancies observed in the MS/MSD analyses for EBP-MW2 warranted J qualification of the results for these four compounds in the parent sample: 1,4-dichlorobenzene, 4-nitrophenol, pentachlorophenol, and 1,2,4-trichlorobenzene.

Data qualifications based on outlying MS/MSD recoveries are presented in the table below:

SDG #	Site ID	Field ID	Analyte	Qualification
HYD04 East Burn Pad	EBP-MW-2	1,2,4-Trichlorobenzene	UJ	
		1,4-Dichlorobenzene	UJ	
		4-Nitrophenol	UJ	
			Pentachlorophenol	UJ

4.3.1.10 PARCC Parameters

Precision and Accuracy

The agreement between duplicate analyses within control limits indicates satisfactory precision in a measurement system. The recovery of a predetermined amount of a spike within control limits indicates satisfactory accuracy with respect to the method on the individual sample and general matrix. For all analyses, 99% of the indicators reviewed for accuracy (LCS, MS/MSD and surrogate spike recoveries) were within evaluation criteria. Ninety-nine percent of the indicators reviewed for precision (MS/MSD and/or field duplicate RPDs) were within evaluation criteria.

The overall accuracy and precision of the groundwater and surface water data collected and reported during the Spring 2002 sampling event were determined to be satisfactory.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represent the characteristics of a population. Representativeness is a qualitative parameter which is of concern in the proper design of the sampling program, such that the sampling locations selected will provide representative data for decisions made at Iowa AAP. Representativeness was assessed using the 15 field duplicate sample pairs collected at Iowa AAP. Field duplicate sample pairs were within evaluation criteria; therefore, it was concluded that representativeness of the data set was satisfactory.

Comparability

Comparability expresses the confidence with which one data set can be compared to another. In accordance with the QAPP, data are comparable when site considerations, collection techniques, measurement methods, and reporting procedures are equivalent for the samples within a sample set. Throughout this investigation, appropriate procedures for sampling and shipping were implemented as specified in the Iowa AAP Facility-Wide Work Plan (URS, 2002a) and the Spring 2002 Groundwater Monitoring Work Plan Addendum (HydroGeoLogic, 2002). It was concluded that results from the Spring 2002 monitoring event are comparable to previous sampling results from monitoring conducted at Iowa AAP.

Completeness

Completeness is defined as the percentage of the total number of analytical results requested which are judged to be valid, including estimated J values, in accordance with the Iowa AAP Facility-Wide Work Plan (URS, 2002a). For Spring 2002, 99.9% of the Iowa AAP groundwater analytical data was considered to be complete after data review and validation.

4.4 FIELD WATER QUALITY PARAMETERS

Field water quality parameter measurements included ORP/redox, dissolved oxygen, pH, conductivity, temperature, turbidity, and ferrous iron (Fe^{2+}). All field parameters were recorded on the sample collection field sheets (included in Appendix A). Field water quality parameter measurements for the Spring 2002 sampling events are presented in Table 4.30.

FIELD ID DATE COLLECTED			JAW-39 In 17, 200	2		JAW-40 In 18, 200	2		JAW-43 n 16, 2002	2		JAW-45 n 16, 2002	2		JAW-48 n 11, 2002			JAW-50 n 11, 2002	61 - L		JAW-51 n 11, 200	2
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L) HMX MNX RDX	400 (b) NA 2 (b)	~ ~ ~	0.77 0.96 0.77	U U U	~ ~ ~	0.82 1 0.82	U U U	~ ~ ~	0.47 0.58 0.47	u U U	~ ~ ~	1.1 1.3 1.1	ม ม บ	~ ~ ~	0.81 i 0.81	U U U U	1.3 < (10)	0.44 0.55 0.44	U	~ ~ ~	0.91 1.1 0.91	U U U
METALS (#g/L) Arsenic Barium Chromium Lead Selenium	10 (a) 2000 (a) 100 (a) 15 (a) 50 (a)	v 8 v v v	10 200 10 10 10	1 1 10 10	< 129 < < <	10 200 10 10	บ ม บ บ	< 120 < < <	10 200 10 10 10	0 10 10 10	< 57.8 < <	10 200 10 10 10	ม ม บ บ บ	(15) 507 < < <	10 200 10 10	1 U U U	v 19 v v v	10 200 10 10	0 1 0 0	< 62.4 < < 8.2	10 200 10 10 10	u u u u
NA PARAMETER (rg/L) Alkalinity Ammonia Carbon Diocide Chloride Nitrate + Nitrite as N Sulfate Sulfate Sulfate Total Argenit Carbon	N N N N N N N N N N N N N N N N N N N	160000 < 70400 7000 < 25000 < 25000 < < <	8000 10 C 1000 10 1000 1000 300 1000	U U U U U	380000 < 167200 2000 70 11000 10000 < <	8000 10 C 1000 10 10 1000 300 1000	U U D	300000 30 132000 4000 20 12000 < 400 1500	8000 10 C 1000 10 1000 1000 300	u	250000 < 110000 2000 840 28000 < < < <	8000 10 C 1000 10 1000 1000 300 1000	ນ ນ ບ	430000 3700 189200 1000 < < 16000 4900 13000	8000 10 C 1000 10 1000 1000 300 1000	u U	390000 < 171600 6000 < 39000 9000 < 1000	8000 10 C 3000 10 1000 300 1000	U U U	240000 < 105600 1000 < 28000 16000 < <	8000 10 C 1000 10 10000 1000 300 1000	U U U U

RL- Reporting Linus Qual - Qualifier J = Estimated

R-Rejected Fupresence of useries

UI-Estimated Nondetec () - Above PRO #g/L = microgram per liter C=Calculated value equivalent to the alkalinity RL X 0.44

U = Nundelest

(PRG): Preliminary Remediation Gual: (a) Mazimun Comminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10" Risk Level NA . Net Available NE- Nor Evaluated

Plan AUNT Ministry Report Autorial Rough (Milistin)

FIELD ID DATE COLLECTED	111		JAW-601 un 12, 200	2		JAW-602 un 11, 2003	2	J	JAW-603 un 12, 2003			L1-MW1 un 12, 2002	2		SL-81 un 05, 2002	1
	PRG	Result	RL	Qual	Result	RL	Quai	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (xg/L)	1000									1.1				120.00		
HMX	400 (b)	<	0.34	U	<	0.99	U	<	0.42	U	<	0.96	U	18	0.73	
MNX	NA	<	0.42	U	<	1.2	U	<	0.52	U	<	1.2	U	4.1	0.91	
RDX	2 (b)	<	0.34	U	<	0.99	U	<	0.42	U	<	0.96	U	(120)	7.3	
METALS (ag/L)	_		_													-
Arsenic	10 (a)	<	10	U	8.1	10	1	<	10	U	<	10	U	<	10	U
Barium	2000 (a)	485	200		317	200	1	92.5	200	1	122	200	J	287	200	1
Chromium	100 (a)	<	10	U	<	10	U	0.79	10	1	9.4	10	3	<	10	U
Lead	15 (a)	<	10	UJ	<	10	U	<	10	UJ	3.4	10	1	<	10	U
Selenium	50 (a)	<	10	UI	<	10	U	<	10	UJ	<	10	UJ.	<	10	U
NA PARAMETER (Mg/L)		1	1.									100		1. 2. 2. 2		
Alkalinity	NE	460000	8000		380000	8000		410000	8000		390000	8000		290000	8000	
Ammonia	NE	1500	10		2300	10		130	10		150	10		40	10	
Carbon Dioxide	NE	202400	С		167200	C		180400	С		171600	С		127600	C	
Chloride	NE	1000	1000		1000	1000		6000	1000		2000	1000		6000	5000	
Nitrate + Nitrite as N	NE	<	10	υ	<	10	U	360	10		140	10		650	10	
Sulfate	NE	<	1000	U	2000	1000		48000	10000		36000	10000		30000	10000	
Sulfide	NE	8000	1000		2000	1000		9000	1000		2000	1000		23000	1000	
Total Kjeldahl Nitrogen	NE	2300	300		2500	300		1200	300		500	300		<	300	U
Total Organic Carbon	NE	2500	1000		3300	1000		1700	1000		1200	1000		2500	1000	

RL = Reporting Limit

Qual = Qualifier I = Estimated R=Rejected

(PRG): Preliminary Remudiation Goal:

(a) Mazimun Contaminant Level (MCL)

(h) Health Advisory Level (HAL) (c) Region IX PRGs

U - Newlesour ##/L = microgram per liter F = presence of interference C=Calculated value equivalent to the elitability

UI = Estimated Nondetect

() =Above PRO

RL X 0.44

(d) 10" Risk Lovel NA . Nm Aveibble NE . Not Evaluated

Prines AAPGW Mentering Equationalytical Results/PRG (Line)

FIELD ID DA COLLECTED	TE		Je	12-A in 04, 200	2	Ju	12-B n 04, 2002		Ju	12-C n 05, 2003		Ju	12-D n 04, 2003	6	ju	12-E n 05, 2002		30	12-F n 14, 2003	2	Ju	12-G n 05, 2003	2
Accession of the second s		RG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Quai
EXPLOSIVES (ug/L)							-									-	-					-	
1.3.5-Trinitrobenzene	1	100 (c)	<	0.55	U	<	0.91	U	<	0.65	U	<	0.58	U	<	0.53	U	<	0.53	U	<	1.6	0
1.3-Dinitrobenzene		1(b)	<	0.55	U	<	0.91	U	<	0.65	U	<	0.58	U	<	0.53	U	<	0.53	U	<	1.6	U
1.4-Dimitroiolucne		5 (6)	<	0.55	U	<	0.91	U	<	0.65	U	<	0.58	U	<	0.53	U .	<	0.53	U	<	1.6	U
2-Amino-4,6-dinitrotolsene	10.03	NA	<	0.55	U	<	0.91	U	<	0.65	U	<	0.58	U	<	0.53	u	×	0.53	u	<	1.6	U
4-Amino-2.6-dinitrotolvene		NA	<	0.55	U	<	0.91	u		0.65	U	<	0.58	U	<	0.53	u		0.53	U		1.6	iii.
RMX	1.	400 (b)	<	0.55	Ũ	<	0.91	U.	<	0.65	U	6	0.58	U		0.53	U		0.53	ŭ		1.6	0
MNX		NA	<	0.68	Ŭ	0.6	11	ĩ	2	0.81	ŭ	2	0.73	ŭ	2	0.66	11	1	0.66	ŭ	-	1.9	11
RDX	1.1.1.1.1.1	2 (b)	0.62	0.55	Ĩ	(3)	0.91	j	2	0.65	ŭ	2	0.58	ŭ	<	0.53	ŭ	e e	0.53	ŭ	è.	1.6	ŭ
METALS (gg/L)								-							1						-		
Arsenic		10(a)	<	10	U	<	10	U	(43.7)	10		<	10	U	<	10	U	(14.1)	10		<	10	U.
Barium		(a) 000	42.2	200	1	107	200	1.	416	200	1	2(3	200	- ă -	83.6	200	1	600	200	1	103	200	1
Chromium		100 (a)	0.88	10	î.	~	10	Ū.	0.88	10	- û -	11.6	10	- 91	<	10	U.	1.8	10	1	2.5	10	i i
Selenium	1111	50 (a)	<	10	Û	7.3	10	Ĩ	<	10	Ū.	<	10	U	2.9	10	ĩ	<	10	Ü	<	10	Ú.
NA PARAMETER (#g/L)	-				-			-		-									_	-			
Alkalinity	11000	NE	240000	8000		200000	8000		480000	8000		450000	8000		280000	8000		560000	8000		320000	8000	
Ammonia	100	NE	<	10	U	<	10	U	4000	50		2600	20		<	10	U	4500	10		<	10	U
Carbon Dioxide		NE	105600	C	2.1	\$8000	C		211200	С		198000	C		123200	C		246400	C		140800	C	
Chloride	112	NE	1000	1000		1000	1000		<	1000	U	1000	1000		1000	1000		1000	1000		3000	1000	
Nitrate + Nitrite as N		NE	860	10		720	10		5	10	Ū.	40	10		490	10		<	10	U	360	10	
Sulfate		NE	28000	10000		42000	10000		2000	1000		2000	1000		19000	1000		(4000	1000		69000	10000	
Sulfide		NE	23000	1000		22000	1000		24000	1000		23000	1000		26000	1000		<	1000	U	22000	1000	
Total Kjeldahl Nitrogen		NE	<	300	U	300	300		7400	1200	- T	3000	300		<	300	U	6700	300		<	300	. 17
Total Organic Carbon		NE	è	1000	ŭ		1000	11	6800	1000		3200	1000		2	1000	ŭ	8200	1000		1000	1000	i M

Key: RL = Reporting Limit Qual = Qualifier I = Estimated R = Rejected F = presence at interference

U) = Eximated Mondelect U = Mandenect () = Ahove PNG #\$/L = microgram per liter C = Calculated rable expressioni so the alkalinny TL X 0.44 (PRG): Prefiminary Remetation Goal (a) Kasimon Concerniant Level (MCL) (b) Health Advisory Level (HAL) (c) Hope IX PRCs (c) Lo^{ne} Xità Level NA • No: Available NE • No: Evaluend

FIELD ID DATE COLLECTED	2.1	Ju	G-15 an 17, 2002	1		JAW-70 n 04, 2002	11		W-70Dup n 04, 2002			JAW-71 n 04, 2003	2		JAW-72 m 04, 2002	201		JAW-73 n 04, 2002			JAW-74 n 05, 2002	2
	PRG	Result	RL.	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Renult	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (µg/L)				1000	1.000			1			1		-									_
1.3.5-Trinitrobenzene	1100 (c)	<	1.1	U	<	0.49	U	<	1.2	U	<	1.5	U	0.53	0.53	J	<	1.3	U	<	0.39	U
1.3-Dinitrobenzene	1 (b)	<	1.1	U	<	0.49	U	<	1.2	U	<	1.5	U	0.32	0.53	1	<	1.3	U	<	0.39	U
2.4-Dinitrotoluene	5 (d)	<	1.1	U	<	0.49	U	<	1.2	U	<	1.5	U	3.2	0.53		<	1.3	U	<	0.39	U
2-Amino-4.6-dinitrotoluene	NA	1.8	1.1	- T - 1	53	25	1.1	47	1.2	T.	6	1.5	U	58	27	1	<	1.3	U		0.39	U
4-Amino-2,6-dinitrotoluene	NA	2.3	4.4	- C	29	0.49	i.	22	1.2	T	6	1.5	ŭ	34	0.53	î		1.3	n II	e	0.39	Ŭ
нмх	400 (b)	300	23		(440)	25	i.	(420)	12	i i	17	1.5	ĩ	290	27	- i -	8.6	1.3	~	1	0.39	ŭ
MNX	NA	25	1.4		6	0.62	1	5.3	1.5	1	1.3	1.9	÷.	-16	0.66	1.1	2.2	1.6			0.49	11
RDX	2 (b)	(430)	23		(600)	25		(610)	12	1	(9.8)	1.5		(2300)	27		(33)	1.3		i i	0.39	ŭ
METALS (#R/L)			-			_																
Arsenic	10 (a)	<	10	U	<	10	U.	<	10	υ	<	10	U	<	10	U	4.9	10	- T -		10	U
Barium	2000 (a)	87.2	200	J	81.7	200	Ĵ.	81.8	200	I.	79.8	200	1	69.6	200	3	102	200	1	125	200	T.
Chromium	100 (a)	<	10	U.	<	10	ũ.		10	U.	6	10	Ü	5	10	ú	<	10	u	5	10	Ū.
Selenium	50 (a)	2	10	ĭ	<	10	ŭ	<	10	Ŭ	<	10	Ŭ	- A	10	ŭ	3.7	10	ĩ	6.8	10	ĩ
NA PARAMETER (#8/L)	-					-					1										-	
Alkalinity	NE	140000	8000		270000	8000		270000	8000		270000	8000		240000	8000		220000	8000		160000	8000	
Ammonia	NE	60	10		<	10	U	20	10		<	10	U	40	10		<	10	U	<	10	υ
Carbon Dioxide	NE	61600	C		118800	C	100	118800	C		118800	С		105600	c		96800	C		76400	C	
Chloride	NE	29000	10000		2000	1000		2000	1000		2000	1000		3000	1000		49000	10000		54000	10000	
Nitrate + Nitrite as N	NE	150	10		210	10		230	10		30	10		780	10		310	10		560	10	
Sulfate	NE	20000	10000		15000	1000		15000	1000		40000	10000		29000	10000		150000	10000		25000	10000	
Suifide	NE	<	1000	υ	24000	1000		24000	1000		23000	1000		24000	1000		26000	1000		26000	1000	
Total Kjeldahl Nitrogen	NE	~	300	ŭ		300	U	<	300	U	<	300	U	500	300		<	300	IJ	6	300	U
Total Organic Carbon	NE	2600	1000		1300	1000		1400	1000		1200	1000		1400	1000		i è	1000	ŭ	-	1000	ŭ

Rey: RL = Reporting Limit Qual = Qualifier

I = Estimated R = Rejected

R = Rejected F = presence of interference UI = Estimated Nondescen

U=Nonderecti () =Above PRG

#g/L = microgram per liter C=Calculated value equivalent to the alkalimity TL X 0.44 (PRG): Preliminary Remediation Goal;

(a) Maximun Comminue Level (MCL) (b) Health Advisory Level (MAL) (c) Region IX PRGs (d) 10° Risk Level NA= Not Avallable NE= Not Evaluated

P New AARDW Reventing Report Americal Research Contine 1

FIELD ID DATE COLLECTED	1		JAW-75	02		1.2-MW1		,	L2-MW2		1.5	L2-MW3 Jun 05, 20	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)								1			1000		
1,3,5-Trinitrobenzene	1100 (c)	<	1.1	U	<	1.2	U	<	0.64	U	<	0.87	U
1,3-Dinitrobenzene	1 (b)	<	1.1	U	<	1.2	U	<	0.64	U	<	0.87	U
2.4-Dinitrototuene	5 (d)	<	1.1	U	<	1.2	U	<	0.64	U	<	0.87	U
2-Amino-4,6-dinitrotoluene	NA	<	1.1	U	<	1.2	U	<	0.64	U	<	0.87	U
4-Amino-2.6-dinitrotoluene	NA	<	1.1	U	<	1.2	U	<	0.64	U	<	0.87	U
HMX	400 (b)	<	1.1	U	<	1.2	U	<	0.64	U	<	0.87	U
MNX	NA	<	1.3	U.	<	1.5	U	<	0.79	u	<	1.1	U
RDX	2 (b)	<	1.1	U	<	1.2	U	<	0.64	Ű	<	0.87	Ũ
METALS (µg/L)													
Arsenic	10 (a)	<	10	U	<	10	U	<	10	U	<	10	U
Barium	2000 (a)	79.5	200	1	309	200	1	213	200	1	95	200	
Chromium	(00 (a)	<	10	U	<	10	U	<	10	U	<	10	U
Selenium	50 (a)	<	10	U	<	10	U.	<	10	U	<	10	U
NA PARAMETER (#g/L)	11.00							-			1000		-
Alkalinity	NE	220000	8000		410000	8000		330000	8000		190000	8000	
Ammonia	NE	10	10		4600	50		<	10	U	10	10	
Carbon Dioxide	NE	96800	C		180400	C		145200	C		83600	C	
Chloride	NE	16000	10000		2000	1000		190000	20000		2000	1000	
Nitrate + Nitrite as N	NE	140	10		190	10		60	10		40	10	
Sulfate	NE	52000	10000		92000	10000		23000	10000		28000	10000	
Sulfide	NE	20000	1000		24000	1000		23000	1000		24000	1000	
Total Kjeldahl Nitrogen	NE	<	300	U	\$900	300		<	300	U	<	300	U
Total Organic Carbon	NE	<	1000	U	6300	1000		<	1000	U	<	1000	U

Keys

RL = Reporting Limit Qual = Qualifier J = Entimated R = Rejected F = presence of interference U] = Eximated Monderec U= Nonderect () = -Above PRG gg/L= microgram pet filer C= Calculated value equivalent to the alkalimity TL X 0.44 (PRG): Pretiminary Remediation Goal; (a) Maximum Consumitant Level (MCL) (b) Health Advasy Level (HAL) (c) Regim IX PRGs (d) 10⁴ Risk Level HA= Non Available NE= Not Evaluated

FIELD ID DATE COLLECTED	1	Ju	16-A n 03, 200	2	Ju	16-8 m 03, 2002		Ju	16-C	2	Ju	16-D n 03, 2002	2	Ĵe	16-E in 03, 2002			JAW-53 in 03, 2002	1		JAW-54 n 03, 2003	2
1 % 140 OAL A.C. 46.	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)			-							1 1 miles			-									
1,3,5-Trinitrobenzene	1100 (c)	<	1.4	U	<	0.94	U	<	0.42	U	<	0.51	U	<	0.43	U	<	0.57	U	7.6	0.56	
2,4-Dinitrotoluene	5 (d)	<	1.4	U	<	0.94	U	<	0.42	U	<	0.51	Û	<	0.43	U	<	0.57	U	1.3	0.56	
2-Amino-4,6-dinitrotoluene	NA	<	1.4	U	<	0.94	U	<	0.42	Ŭ.	<	0.51	Ū	<	0.43	Ú.	<	0.57	U	67	0.56	1
4-Amino-2,6-dinitrotoluene	NA	<	1.4	U.	<	0.94	11	<	0.42	11	<	0.51	u.	<	0.43	ŭ	<	0.57	Ŭ	22	0.56	- G
HMX	400 (b)		1.4	Ň	1	0.94	ũ	è	0.42	ũ.	1.2	0.51	n.	2	0.43	ii.	~	0.57	ü	120	11	1
MNX	NA		1.8	17	6	1.2	U.	<	0.52	Ú.	1	0.63	ii.	2	0.53	ŭ	e l	0.71	U	8	0.7	
RDX	2 (b)	<	1.4	Ŭ	<	0.94	Ŭ	<	0.42	Ŭ	~	0.51	ŭ	i c	0.43	ŭ	i i	0.57	ŭ	(390)	11	1
METALS (ag/L)	- 1		-		-								_					_		100.001		
Barium	2000 (a)	361	200	1	101	200	J	145	200	1	114	200	1	266	200	1	101	200		80.9	200	1
Chromium	100 (a)	2.3	200	i.	<	10	U	1.4	10	- î -	<	10	U	1.7	10	1	<	10	U	<	10	Ū.
Lead	15 (a)	<	10	11		10	n	-	10	Û.		10	10	2.8	10	1		10	Ŭ.	2	10	Ŭ.
Selenium	50 (a)	<	10	υ	<	10	Ŭ	~	10	ũ	<	10	Ŭ	<	10	ΰ	<	10	ŭ	2.8	10	ĭ
NA PARAMETER (#g/L)		1 Sector To	-		1.100.00		100	10.00						1								
Alkalinity	NE	490000	8000		300000	8000		230000	8000		240000	8000		480000	8000		250000	8000		110000	8000	1
Ammonia	NE	1700	10		<	10	U	<	10	U	<	10	U	360	10		10	10		20	10	
Carbon Dioxide	NE	215600	C		132000	C		101200	С		105600	C		211200	с		110000	C		48400	С	1
Chloride	NE	1000	1000		2000	1000		1000	1000		2000	1000		1000	1000		<	1000	U	8000	1000	
Nitrate + Nitrite as N	NE (a)	<	10	U	310	10		150	10		40	10		20	10		<	10	U	460	10	
Sulfare	NE	1000	1000		22000	10000		8000	1000		30000	10000		20000	10000		1000	1000	1.2	30000	10000	
Sulfide	NE	22000	1000		24000	1000		24000	1000		23000	1000		23000	1000		24000	1000		25000	1000	
Total Kjeldahl Nitrogen	NE	3200	300		400	300		600	300		700	300		400	300		600	300		500	300	
Total Organic Carbon	NE	4000	1000		<	1000	U	<	1000	U	<	1000	U	<	1000	U	<	1000	U	<	1000	U

Key: RL= Reporting Limit Qual= Qualifier J=Extimated R=Rejected F=presence of interference

UI = Estimated Nendaters UI = Nondeters II = Above PRG #J/L = microgram per iller C=Cabolisties (who equivalence as the altalinity RL X 0.44

(PRO): Preliminary Remodision Goal; (a) Matimum Consuminary Level (MCL) (b) Hasilth Advinory Level (HAL) (c) Ragion IX PRGs (d) Jo² Risk Level NA = Net Amilable NE = Net Embased

FIELD ID DATE COLLECTED			W-54Du			AW-55	2.24		AW-56	1.11		AW-57	1.11		AW-77	
DATE COLLECTED	PRG	Result	1 03, 200 RL	Qual	Result	15, 2003 RL	Qual	Result	16, 200 RL	Qual	Result	03, 200 RL	Qual	Result	16, 200 RL	Qua
EXPLOSIVES (#R/L)				-							-	-	-			
1.3.5-Trinitrobenzene	1100 (c)	7.7	0.84		<	0.62	U	<	0.51	U	<	1.2	υ	<	0.91	U
2,4-Dinitrotoluene	5 (d)	1.2	0.84		<	0.62	U	<	0.51	U	<	1.2	U	<	0.91	U
2-Amino-4,6-dinitrotoluene	NA	66	0.84	J	<	0.62	U	<	0.51	U	<	1.2	Û	<	0.91	U
4-Amino-2,6-dinitrotoulene	NA	22	0.84	J	<	0.62	U	<	0.51	U	<	1.2	U	<	0.91	Ŭ
HMX	400 (b)	160	0.84	3	3	0.62	1	<	0.51	U	<	1.2	U	<	0.91	U
MNX	NA	8.1	1.1	1	<	0.78	U	<	0.63	ũ	<	1.5	ŭ	<	1.1	Ŭ
RDX	2 (b)	(520)	8.4	- j -	<	0.62	U	<	0.51	Ŭ	<	1.2	Ŭ	~	0.91	Ũ
METALS (#g/L)								-								
Barium	2000 (a)	74.9	200	1	144	200	j	64.6	200	1	56.2	200	1	53.4	200	1
Chromium	100 (a)	<	10	U	<	10	U	<	10	U	<	10	U	<	10	Ū.
Lead	15 (a)	<	10	Ú	<	10	ü	<	10	U	<	10	Ũ	<	10	U
Selenium	50 (a)	<	10	U	<	10	U.	<	10 10	U	<	10	U	<	10	U
NA PARAMETER (Ag/L)				-				-			1. S. 1.	-			_	-
Alkalinity	NE	170000	8000	t	300000	8000	1.0	150000	8000		120000	8000		140000	8000	
Ammonia	NE	<	10	U	<	10	U	<	10	0	<	10	U.	<	10	U
Carbon Dioxide	NE	74800	Ċ	1	132000	C		66000	C		52800	C		61600	C	
Chloride	NE	8000	1000		2000	1000	a 11	<	1000	U	4000	1000		7000	1000	
Nitrate + Nitrite as N	NE	470	10		80	10		<	10	U	2300	50		290	10	
Sulfate	NE	29000	10000		24000	10000	1.51	63000	10000		36000	10000		29000	10000	11.2
Sulfide	NE	22000	1000		<	1000	u	<	1000	U	23000	1000		<	1000	U
Total Kjeldahl Nitrogen	NE	500	300		<	300	u U	<	300	u	400	300		<	300	Ū
Total Organic Carbon	NE	<	1000	U	1200	1000	1.5	<	1000	U	<	1000	U	<	1000	Ŭ

Key:

RL= Reporting Limit Qual = Qualifier I=Entimeted R=Rejected F=presence of interference

 W = Entimated Nondetect

 U = Nondetect

 (1)
 = Ahnee PRG

 eg/L = Incorport per liter

 C = Celositated value requiratent in the albahning RL X 0.44

(PRG): Preliminary Remediation Gost; (a) Metainian Camaninani Levri (MCL) (b) Hedità Adviany Level (HAL) (c) Region IX PRGs (d) 10⁷ Risk Level NA = Not Available NE= Not Evalumed

FIELD ID DATE COLLECTED		1	AW-15 15, 200	2		W-16 16, 200	z		AW-17 05, 2002			AW-18 05, 200	2		AW-19 05, 200	2		W-20 15, 2003	2		AW-21 15, 2002	2
A CONTRACTOR OF A CONTRACT OF	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#P/L)									-						-	-						
HMX	400 (b)	3.7	0.64	3	<	0.87	U	5.3	0.86	1	2	0.94	15 · ·	<	0.94	U	<	0.64	U	1.8	0.52	1
MNX	NA	<	0.79	Û.	<	1.1	Ū	1.3	1.1	- î	5	1.2	U	<	1.2	U	<	0.79	U.	0.37	0.65	1
RDX	2 (b)	(9.6)	0.64	. 611	<	0.87	U	(14)	0.86	- C 1	(5.8)	0.94	1.0	<	0.94	Ū	1.8	0.64	- e 4	(12)	0.52	
METALS (AZ/L)																	-		-			
Barium	2000 (a)	119	200	1	372	200	3.0	98.2	200	3.1	201	200	1	111	200	1	345	200	3.	75.1	200	1
Chromium	100 (a)	<	10	U	4.7	10	- 1 - I	<	10	U	0.72	10	1	<	10	U.	<	10	0.	<	10	- U
Lead	15 (a)	<	10	UJ	1.6	10	1	<	10	Ū	<	10	U	<	10	U	<	10	UJ	<	10	UI
Sclenium	50 (a)	5.9	10	J	2.3	10	- j -	<	10	Ŭ	<	10	Ŭ	3.2	10	î.	2.6	10	1	5.8	10	1
NA PARAMETER (#g/L)		1	-		1	_																_
Alkalinity	NE	290000	8000		400000	8000		250000	8000		320000	8000	1.231	310000	8000		360000	8000		180000	8000	
Ammonia	NE	220	10	1.11	<	10	U	20	10		<	10	U	<	10	U	<	10	U	<	50	U
Carbon Dioxide	NE	127600	C		176000	C		110000	C		140800	C		136400	C		158400	C		79200	C	
Chloride	NE	2000	1000		<	1000	U	9000	1000		6000	1000		1000	1000		2000	1000		<	1000	U
Nitrate + Nitrite as N	NE	280	10		<	10	u	170	10		420	10		70	10		2300	50		980	10	
Sulfate	NE	72000	10000	1.46	5000	1000		81000	10000		\$6000	10000		33000	10000		9000	1000		32000	10000	
Sulfide	NE	<	1000	U	<	1000	U	24000	1000		23000	1000		23000	1000		<	1000	U	<	1000	U
Total Kieldahl Nitrogen	NE	400	300		<	300	Ū.	<	300	U	<	300	U	<	300	U	~	300	U	<	300	U
Total Organic Carbon	NE	2000	1000		è	1000	U.	1000	1000			1000	Ť.	1000	1000	-	6	1000	U.	<	1000	ŭ

RL= Reporting Limit	UI = Estimated Mondeson
Qual Qualifier	U=Nondesect
I-Entimeted	() Above PRG
R - Rejected	#g/L= microgram per liter

Fispresence of unerform

C = Cataland value equivalent to the allolinity RL X 0.44

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10" Risk Level RA = Nos Avaliable NE . No Evaluated

P three AATION Meadinging Report Law Street Result (PEG villes 14

FTELD ID DATE			AW-22	
COLLECTED	PRG	Result	8 05, 200 RL	Qual
EXPLOSIVES (#g/L)	V			
HMX	400 (b)	<	0.99	U
MNX	NA	<	1.2	U
RDX	2 (b)	(3.7)	0.99	- 5
METALS (ag/L)		1.000	100	-
Barium	2000 (a)	154	200	J
Chromium	100 (a)	<	10	U
Lead	15 (a)	<	10	U
Selenium	50 (a)	3.3	10	1
NA PARAMETER (#g/L)	-			-
Alkalinity	NE	360000	8000	
Ammonia	NE	<	10	U
Carbon Dioxide	NE	158400	С	
Chloride	NE	7000	1000	
Nitrate + Nitrite as N	NE	430	10	
Sulfate	NE	88000	10000	
Sulfide	NE	24000	1000	
Total Kjeldahl Nitrogen	NE	<	300	U
Total Organic Carbon	NE	1200	1000	

Key: RL = Reparring Limit Qual = Qualifier J = Estimated R = Rejected F = presence of interference

U) = Ealmated Nondetect U = Nondetect () = Ahose PRG µg/L = inicrogram per filer C = Calculated value equivalent to the alkalimity RL X 0.44 (PRG): Preliminary Remediation Goul: (a) Makiman Consuminant Level (MCL) (b) Heahh Addisory Level (HAL) (c) Region IX PRGs (d) 10⁷ Risk Level NA= Not Available NE= Hes Evaluated

FIELD ID DATE COLLECTED			W-604			W-605	
	PRG	Result	RL	Qual	Result	RL	Qual
METALS (#g/L) Barium	2000 (a)	80.7	200	4	123	200	1
VOLATILE ORGANC COMPOUNDS (#g/L) Freen113	59000 (c)	18	1	. j	<	3	U

RL= Reporting Limit Qual = Qualifier J = Estimated R = Rejected F = presence of interference U) = Estimated Nondesea U = Nondesea () = Above PRO #g/L = microgram per liter (PRG): Preliminery Remediation Goal: (a) Meximan Contaminana Level (MCL) (b) Health Advisory Level (MAL) (c) Region IX PRGs (d) 10⁴ Risk Level NA = Nat Avsilable NE = Nat Evakaned

SUMMARY OF CHEMICALS DETECTED AT LINE 5A AND 5B SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED			A-MW1	2		A-MW2	2		B-MW1	2		B-MW2	2
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qua
EXPLOSIVES (#g/L)	10000	1.00		1.11	1.1.1			1.00	-	2.51	11.1.1.1		-
1,3,5-Trinitrobenzene	1100 (c)	<	0.71	U	0.98	1	1	<	0.27	U	<	0.27	U
2.4.6-Trinitrotolucne	2 (b)	(6.9)	0.71		(6.3)	4		<	0.27	U	<	0.27	U
2-Amino-4,6-dinitrotoluene	NA	8.5	0.71	1	30	1	1	<	0.27	U	<	0.27	U
4-Amino-2,6-dinitrotoluene	NA	19	0.71	1	65	1	1	<	0.27	U	<	0.27	U
нмх	400 (b)	4.3	0.71	1	7.6	1	J	24	0.27	1	0.84	0.27	1
MNX	NA	0.46	0.89	1	3.1	1.2	1	0.89	0.34	T ()	<	0.34	U
RDX	2 (b)	(4.2)	0.71	1	(15)	1	1946	(42)	2.7	1.191	0.77	0.27	
METALS (Ag/L)	111111111111111111111111111111111111111	1	100	-				Lorn.			1.00	1.000	
Barium	2000 (a)	244	200	1	113	200	1	137	200	J	90.3	200	1
Selenium	50 (2)	<	10	U	<	10	UJ	2.8	10	1	<	10	UJ
NA PARAMETER (ag/L)	1111	11.000			1.000	100.000							
Alkalinity	NE	280000	8000		150000	8000		280000	8000		180000	8000	
Ammonia	NE	30	10		20	10	- C - D	<	10	U	<	10	U
Carbon Dioxide	NE	123200	C		66000	C		123200	C		79200	C	
Chloride	NE	<	1000	υ	2000	1000		2000	1000	- L	4000	1000	
Nitrate + Nitrite as N	NE	70	10		310	10		510	10		150	10	
Sulfate	NE	28000	10000	1.111	40000	10000		24000	10000		28000	10000	
Total Organic Carbon	NE	1400	1000	a 11.1	1200	1000		1000	1000	100	1400	1000	

y.

RL= Reporting Limit Qual= Qualifier

J = Estimated

R = Rejected

F = presence of inserferen

U/=Estimuted Handenses U= Hungelease 1) = Above PRG #g/L= microgram per filter C=Calculated value equivalent to the elicitary RLX 0.44 (PRG): Preliminary Remodiation Galil. (a) Makinan Contaminari Level (MCL) (b) Makih Advisory Level (MAL) (c) Region (X PRGs (d) 10⁴ Risk Level MA= Not Available NE = Not Evaluated

Pilers ANPON Medering ReportAntyrial Research BG (Con 3A & 3H

FIELD ID DATE COLLECTED			AW-29 28, 2002			AW-30 27, 2002	-		W-31 27, 2002			AW-610 n 26, 2000			AW-611 n 26, 2002	2		AW-612 n 27, 2002			W-612Du n 27, 200	2
the second se	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL.	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L) RDX	2(0)	<	0.56	U	<	0.7	U	~	0.62	U	ĸ	0.87	U	ы	0.56		<	1	U	<	0.81	U
NA PARAMETER (#g/L)								and the second									- Barriss				-	
Alkalinity	NE	190000	8000	100	280000	8000		260000	8000	1 . DA	250000	8000		270000	3000	1.11	230000	8000	71	230000	8000	
Ammonia	NE	<	10	U	<	10	U	<	8000	U	<	10	U	20	10		<	10	UJ	50	10	1
Carbon Dioxide	NE	83600	C		123200	C		114400	C		110000	C		118800	C		101200	C		101200	C	
Chloride	NE	5000	1000		4000	1000		11000	10000		7000	1000		12000	10000	1 I I I	13000	10000		13000	10000	
Nitrate + Nitrite as N	NE	110	10		50	10		<	10	U	4000	50		1600	10		1200	10		1100	10	
Sulfale	NE	\$3000	10000	1. AN 1.	68000	10000	10 A 1	65000	10000	121	41000	10000		53000	10000		35000	10000		33000	10000	
Total Organic Carbon	NE	<	1000	U	<	1000	U	10000	1000		1000	1000		1000	1000		<	1000	U	<	1000	U
SEMIVOLATILE ORGANIC COMPOUNDS (#g/L) 4. Methylphenol Beratic acid Bis(2-ethylhexyl) phthalate Pertachloroofenol	180 (c) 150000 (c) 6 (a) 1 (a)	~ ~ ~ ~	5 9 5 5	U U U	~ ~ ~ ~	5 10 5	U U U U	4 23 <	5 10 5	J U J	~~~~	5 10 5	U U J U	~~~~	5 10 5	0000	~~~~	5 10 5	U U U	~ ~ ~ ~	5 10 5	U U U U
Phenol	4000 (b)	<	5	Ũ	<	5	Ũ	2	5	3	<	5	Ū	<	5	Ŭ	<	5	U	<	5	U
VOLATILE ORGANIC COMPOUNDS (xg/L) 1.1-Dichlomethere Freen113	7 (a) 59000 (c)	< (83000)	1500	U	< (64000)	1500	U	< (230000)	6000 6000	U	< 1000	30 30	U	< 24000	600 600	U	(51) 17000	150 300	1	< 15000	300 600	U

Key: RL = Reporting Limit

Qual - Qualifier T= Estimated R-Rejected

Fupresence of inte

(PRG): Pretininary Remediation Gent; (a) Maximum Contantinum Level (MCL)

U = Nonkton () +Ahone PRG ##/L= microgram per filer C+Calculated value equivalent to alkalizity RL S

UI - Enimated Number

0.44

(b) Health Advisory Level (HAL) (c) Region IX PRGs (d) IO⁴ Risk Level NA- Not Available NE . Nes Evaluand

Films AAPON Maning Partiliadybul Roman (IRCyllar 1

TABLE 4.8 SUMMARY OF CHEMICALS DETECTED AT LINE 800 / PINK WATER LAGOON SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	16-1		0-MW-01 n 28, 200			0-MW-02 30, 2002			-MW-03			0-MW-04 n 14, 2000			-MW-05 30, 2002			W-050 30, 200			0-MW-06 n 29, 200	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (kg/L)	1			1000		_											11.5					
1.3.5-Trinitrobenzere	1100 (c)	<	0.58	U	<	0.75	U	~	0.94	U	<	0.6	U	85	42	1	100	58	1	<	0.61	U
1.3-Dimitrobenzene	1 (b)	<	0.58	U	<	0.75	U.	<	0.94	U	<	0.6	U	(47)	42	1	<	58	UI	<	0.61	U
2.4.6-Triminosoluene	2 (b)	<	0.58	U	<	0.75	U	<	0.94	υ	<	0.6	υ	(32000)	420	1	(30000)	580		127)	0.61	
2,4-Dimitroinluene	5 (d)	<	0.58	U	<	0.75	U	<	0.94	U	<	0.6	U	(189)	42	1	(190)	58	1	<	0.61	U
2.6-Dimitrotoluene	5 (d)	<	0 58	U	<	0.75	U	<	0.94	U.	<	0.6	Ū.	<	42	01	<	58	U)	4.9	0.61	
2-Amino-4,6-dinitrotoluciz	NA	<	0.58	υ	<	0.75	U	<	0.94	u	<	0.6	N.	7100	420	1	5600	58	1	<	0.61	U
4-Amino-2,6-dinitrotolucre	NA	<	0.58	U	<	0.75	U	<	0.94	U	<	0.6	v	2100	42	1	2300	58	1	5.7	0.61	,
4-Nitrotoluene	NA	<	0.58	U	<	0.75	U	<	0.94	U	<	0.6	U	72	42	1	88	58	1	<	0.61	U
HMX	400 (6)	<	0.58	U	<	0.75	U	<	0.94	U	<	0.6	U	360	42	1	(4)0)	58	1	140	61	1
MNX	NA	0.49	0.58	1	<	0.75	U	<	1.2	U.	<	0.75	U	<	42	L/J	<	58	U	12	0.61	
RDX	2 (b)	(16)	0.58		<	0.75	Ū.	<	0.94	U	<	0.6	- U	(2700)	42	1	(2900)	58	1	(1100)	61	- 1
NA PARAMETERS (Ug/L)											1			1								
Alkalinety	NE	280000	8000		440000	8000		480000	8000		450000	5000		1200000	8000		1.000			270000	8000	
Ammonia	NE	to	10		220	10		120	10	1	70	10		150000	1000					70	10	
Carbon Diaside	NE	123200	C		193600	C		211200	C		198000	C		528000	C					118800	С	
Chloride	NE	9000	1000		1000	1000		1000	1000		10000	10000		10000	5000					4000	1000	
Nitrate + Nitrite as N	NE	21000	200		150	10		30	10		20	10		62000	1000					590	10	
Ortho-Photphate	NE	<	1000	u	<	1000	UJ	<	1000	U	<	1000	U	<	1000	UJ.				<	1000	U
Sulfate	NE	27000	10000		26000	10000		11000	1000		56000	10000		46000	10000	1.00				41000	10000	
Sulfide	NE	<	1000	U	<	1000	U	<	1000	U	1000	1000		<	1000	U				<	1000	U
Total Kieldahl Numgen	NE	<	300	U	400	300		300	300		1900	300		120000	3000					<	300	U
Total Organic Carbon	NE	1200	1000		1500	1000		1400	1000		1000	1000		43000	8000					3700	1000	
PERCHLORATE (Ug/L)	11														-						_	
Perchlorate	15 (c)				10.000			1000						<	20	.0	111					
VOLATILE ORGANIC							-						-						-			
COMPOUNDS (ag/L)	and a strength of the							11												1.000		
Freonl 13	59000 (c)				<	3	U													2	3	1

RL= Reporting Limit Qual= Qualifier J = Estimated R = Rejected

F = presence of interference

E=Value exceeds linear range

UJ = Estimated Nonderect U=Nondetern () = Above PRG µg/L = microgram per liter C = Calculated value equivalent to alkalinary RL X 0.44

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminunt Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁻⁴ Risk Level NA = Not Available NE - Not Evaluated

P You AND THE SHARE AN ALLOW REPORTED IN

TABLE 4.8 SUMMARY OF CHEMICALS DETECTED AT LINE 800 / PINK WATER LAGOON SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	1.1		0-MW-07 n 30, 2002			D-MW-08			0-MW-09 1 14, 2002			0-MW-10 18, 2002			-MW-11 18, 200			-MW-12 27, 2002			0-MW-13	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)			-	12.2			-					_	-						-			-
1.3.5-Trinitrobenzene	1100 (c)	<	0.47	U	<	0.25	U	<	0.4	U	<	1.6	U	<	0.42	U	<	0.75	U	<	0.7	U
1.3-Dinitrobenzene	1 (b)	<	0.47	U	<	0.25	U	<	0.4	U	<	1.6	U.	<	0.42	U	<	0.75	U	<	0.7	U
2,4,6-Trinitrotoluene	2 (b)	<	0.47	U	<	0.25	U	<	0.4	U	<	1.6	Ŭ	<	0.42	U	<	0.75	U	<	0.7	U
2,4-Dinitrotolucne	5 (d)	<	0.47	U	<	0.25	U	<	0.4	U	<	1.6	U	<	0.42	U	<	0.75	Ũ	<	0.7	Ū
2.6-Dinitrotoluene	5 (d)	<	0.47	U	<	0.25	u	<	0.4	ũ	<	1.6	ŭ	<	0.42	U	<	0.75	Ū		0.7	Ŭ
2-Amino-4.6-dinitrotoluene	NA	<	0.47	U	<	0.25	U	<	0.4	Ū.	<	1.6	Ŭ	<	0.42	Ŭ	<	0.75	ŭ	6	0.7	Ŭ
4-Amino-2,6-dinitrotoluene	NA	<	0.47	U	<	0.25	Ū	è	0.4	Ū.	è	1.6	ü	<	0.42	ŭ	<	0.75	ŭ	è	0.7	Ŭ
4-Nitrotoluene	NA	<	0.47	ŭ		0.25	ũ	<	0.4	Ŭ.	~	1.6	ŭ	<	0.42	Ŭ	<	0.75	ŭ	2	0.7	Ŭ
HMX	400 (b)	<	0.47	ŭ	1	0.25	ī	e	0.4	ŭ	č	1.6	ŭ	<	0.42	ŭ	× ×	0.75	ŭ	2	0.7	Ŭ
MNX	NA	2	0.47	ŭ	<	0.25	ii.	-	0.5	ŭ	2	2	U	~	0.52	U	< X	0.75	U	2	0.7	Ŭ
RDX	2 (b)	2	0.47	ŭ	1.4	0.25		2	0.4	ŭ	2	1.6	ŭ	ĩ	0.42	ü	2	0.75	ŭ	2	0.7	ŭ
NA PARAMETERS (AP/L)					-				-		-			1	71.00						- 33.0	
Alkalinity	NE	190000	8000		200000	8000		190000	8000		240000	8000		440000	8000		240000	8000		260000	8000	
Ammonia	NE	600	10		<	10	U.	<	10	U.	<	10	U	320	10		<	10	U	<	10	U
Carbon Dioxide	NE	83600	C		88000	C		83600	C		105600	C	0.5	193600	C		105600	C		114400	C	
Chloride	NE	3000	1000		7000	1000		15000	10000		19000	10000		<	1000	U	2000	1000		1000	1000	
Nitrate + Nitrite as N	NE	20	10		300	10		<	10	U	2300	50		è	10	ŭ	4600	50		2300	20	
Ortho-Phosphate	NE	<	1000	IJ	<	1000	U	è	1000	ŭ	<	1000	U	- ×	1000	U	<	1000	U	2000	1000	U
Sulfate	NE	60000	10000	0,	22000	10000	U	35000	10000	9	31000	10000	U	3000	1000	0	26000	10000	U	36000	10000	U
Sulfide	NE	<	1000	U	<	1000	U	<	1000	U	8000	1000		10000	1000		<	1000	U	3000	1000	U
Toral Kieldahl Nitrogen	NE	1000	300	U		300	ŭ		300	ü	<	300	U.	500	300		à	300	U		300	ŭ
Total Organic Carbon	NE	1600	1000		2	1000	ŭ	1200	1000	U.	2800	1000		1200	1000		2	1000	ŭ	2	1000	ŭ
PERCHLORATE (ug/L)	- 194	1000	1000			1000		1000	1000		2000	1000			1000	-	-	1000	Ŷ		1000	-
Perchlorate	18 (c)	1	-			_													1.11			
VOLATILE ORGANIC COMPOUNDS (rg/L) Freen113	59000 (c)		1	u																		

Key: RL= Reporting Limit Qual= Qualifier J=Estimated R=Rejected F=presence of interference

UJ = Estimated Nondetect U=Nondetect () = Above PRG µg/L = microgram per liter C = Calculated value equivalent to alkalinity RL X 0.44

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10" Risk Level NA = Not Available NE = Not Evaluated

SUMMARY OF CHEMICALS DETECTED AT LINE 800 / PINK WATER LAGOON SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DAT COLLECTED	Έ			-MW-14			0-MW-15 n 30, 2002			0-MW-16 n 30, 2002			-MW-1 29, 200			0-MW-18 n 28, 2002			-MW-19	
The A. Sect. 'Y	PRG	1.1	Result	RL.	Qual	Result	RL	Qual	Result	RL.	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qua
EXPLOSIVES (#g/L)					1.10				1.0											_
1,3,5-Trinitrobenzene	1100	c)	<	0,43	U	<	0.68	U	<	0.64	U	<	0.73	U	<	0.23	U	<	0.86	U
1.3-Dinitrobenzene	1	b)	<	0.43	U	<	0.68	U	<	0.64	U	<	0.73	U	<	0.23	U	<	0.86	U.
2.4.6-Trinitrotoluene	2	b)	<	0.43	U	<	0.68	U	<	0.64	U	1.8	0.73	J	<	0.23	U	<	0.86	υ
2,4-Dinitrotoluene	5	(b)	<	0.43	U	<	0.68	U	<	0.64	U.	<	0.73	U	<	0.23	U	<	0.86	U
2,6-Dinitrotoluene	5	d)	<	0.43	U	<	83.0	U	<	0.64	U	<	0.73	U	<	0.23	U	<	0.86	υ
2-Amino-4.6-dinitrotoluene	NA	10	<	0.43	U	<	0.68	U	<	0.64	U	<	0.73	U	<	0.23	Ŭ	<	0.86	U
4-Amino-2,6-dinitrotoluene	NA		<	0.43	U	<	0.68	U	<	0.64	U	<	0.73	U	<	0.23	U	<	0.86	U
4-Nitrotoluene	NA		<	0.43	U	<	0.68	U	<	0.64	U	<	0.73	U	<	0.23	U	<	0.86	U
HMX	400	ъ)	<	0.43	Ŭ	<	0.68	U	<	0.64	U	<	0.73	u	<	0.23	U	<	0.86	U
MNX	NA	er	0.56	0.53	Ţ	<	0.68	ũ	<	0.64	U	<	0.73	U	<	0.23	U	<	1.1	U
RDX	2	b)	(5.9)	0.43	- 2	<	0.68	Ŭ	<	0.64	- ŭ	<	0.73	Ŭ	0.38	0.23		<	0.86	ŭ
NA PARAMETERS (Ug/L)							-			-					T		-		_	
Alkalinity		NE	400000	8000		190000	8000	Y	400000	8000		370000	8000		280000	8000		440000	8000	
Ammonia		NE	10	10		<	10	U	20	10	UI	560	10		<	10	U	320	10	
Carbon Dioxide		NE	176000	C		83600	С		176000	C		162800	С		123200	с		193600	C	
Chloride		NE	1000	1000		5000	1000	1.5	6000	1000		4000	1000		6000	1000		<	1000	U
Nitrate + Nitrite as N		NE	13000	100		4500	50	1.1	40	10		20	10		890	10		<	10	υ
Ortho-Phosphate	4	NE	<	1000	U	<	1000	U	<	1000	U	<	1000	U	<	1000	U	<	1000	U
Sulfate		NE	11000	1000		29000	10000	1.0	40000	10000		12000	1000		36000	10000		<	1000	U
Sulfide		NE	<	1000	U	<	1000	U	<	1000	u	<	1000	U	<	1000	U	3000	1000	
Total Kieldahl Nitrogen		NE	<	300	U	<	300	U	400	300		1000	300		<	300	U	500	300	
Total Organic Carbon	1 1 1 1 1 1 1 1	NE	<	1000	U	1300	1000		1800	1000		1500	1000		1500	1000		1200	1000	
PERCHLORATE (ug/L)																_		1		_
Perchlorate	18	(c)								-					(28)	4				
VOLATILE ORGANIC COMPOUNDS (#g/L) Freen) 13	59000								-	-	24								4	

Key: RL= Reporting Limit Qual = Qualifier J=Estimated

R = Rejected

F= presence of interference

UI = Estimated Nondetect U=Nondetect () = Above PRG #g/L = microgram per liter

alkalinity RL X 0.44

C=Calculated value equivalent to

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10" Risk Level NA = Not Available NE= Not Evaluated

TABLE 4.8 SUMMARY OF CHEMICALS DETECTED AT LINE 800 / PINK WATER LAGOON SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	177		n 30, 200			0-MW-21 n 28, 2002			0-MW-22			0-MW-23 n 26, 2002			-MW-24			0-MW-25 n 28, 2002			0-MW-26 n 14, 2003	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)	1.100.000.000					100	-			1	7		1.82			10140	1			-		
1,3,5-Trinitrobenzene	1100 (c)	<	1	U	<	1.4	U	<	0.34	U	<	1	U	<	0.99	U	<	0.87	U	<	0.27	U
1,3-Dinitrobenzene	1 (b)	<	1	U	<	1.4	U	<	0.34	U	<	1	U	<	0.99	U	<	0.87	U	<	0.27	U
2,4,6-Trinitrotoluene	2 (b)	<	1	U	<	1.4	U	<	0.34	U	<	1	U	<	0.99	U	<	0.87	U	<	0.27	U
2,4-Dinitrotoluene	5 (d)	<	1	U	<	1.4	U	<	0.34	U	<	1	U	<	0.99	U	<	0.87	υ	<	0,27	υ
2.6-Dinitrotoluene	5 (d)	<	1	U	<	1.4	U	<	0.34	U	<	1	U	<	0.99	U	<	0.87	U	0.61	0.27	1
2-Amino-4,6-dinitrotoluene	NA	<	1	U	<	1.4	U	<	0.34	U	<	1	U	<	0.99	U	<	0.87	U	0.63	0.27	1
4-Amino-2,6-dinitrotoluene	NA	<	1	U	<	1.4	U	<	0.34	U	<	1	U	<	0.99	U	<	0.87	U	1.9	0.27	1
d-Nitrotoluene	NA	<	1.1	ŭ	<	1.4	U	<	0.34	Ü			ŭ		0.99	ŭ	<	0.87	Ũ	<	0.27	U
нмх	400 (b)	~	1	ũ	1	1.4	Ĥ	<	0.34	Ŭ.	~	1	Ŭ	1	0.99	U	26	0.87		17	0.27	- F
MNX	NA	ć	- 12 C	ŭ	<	1.4	11	~	0.42	ŭ	2	1	ũ	1	0.99	ŭ	50	0.87		2.4	0.34	
RDX	2 (b)	< C	1	ŭ	i i	1.4	Ŭ	<	0.34	ŭ	è	î.	ŭ	2	0.99	ŭ	(1600)	87	1	(260)	14	
NA PARAMETERS (ug/L)					-		-	-		-												
Alkalinity	NE	190000	8000		460000	8000		450000	8000		430000	8000		430000	8000		350000	8000		270000	8000	
Ammonia	NE	30	10		240	10		140	10		110	10		480	10		<	10	U	30	10	
Carbon Dioxide	NE	83600	C		202400	C		198000	C		189200	C		189200	C		154000	C	0	118800	C	
Chloride	NE	2000	1000		2000	1000		1000	1000		11000	10000		2000	1000		5000	1000		2000	1000	
Nitrate + Nitrite as N	NE	1400	10		80	10		10000	10	υ	30	10		<	10	U	250	10		2300	50	
Ortho-Phosphate	NE	<	1000	U	<	1000	U	< <	1000	Ŭ		1000	U	i i	1000	Ŭ		1000	U	<	1000	U
Sulfare	NE	35000	10000	0	30000	10000	u	32000	10000	U	< 42000	10000	Ū.	2000	1000	0	43000	10000	Ų.	34000	10000	0
Sulfide	NE		1000			1000			1000	υ	42000	1000	Ū		1000	U	0.000	1000	u		1000	U
Total Kjeldahl Nitrogen	NE	<	300	U	< 400	300	U	400	300	U.	5		Ŭ	< 800	300	0	< 400	300	U	< 300	300	0
Total Organic Carbon	NE	1600	1000	0	1400	1000		< 00	1000	U.	5	300	U U	1900	1000		2000	1000		1500	1000	
PERCHLORATE (Jg/L)	146	1000	1000	-	1400	1000		~	1000	0	~	1000	0	1300	1999			1000		1.500	1000	_
Perchlorate	18 (c)													_			1			-		
VOLATILE ORGANIC COMPOUNDS	18 (C)				-											_				-		
(xg/L) Freen113	59000 (c)													1.								

RL= Reporting Limit Qual = Qualifier I = Estimated

F=presence of interference

R=Rejected

UJ=Estimated Nondetect U=Nondetect () = Above PRG µg/L = microgram per liter

X 0.44

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs C=Calculated value equivalent to alkalinity RL (d) 104 Risk Level NA = Not Available

NE = Not Evaluated

SUMMARY OF CHEMICALS DETECTED AT LINE 800 / PINK WATER LAGOON SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	1.2	Ju	G-17 n 13, 200	2		G-18 1 30, 2002			-18Dup 30, 2002			G-19 30, 200	2		G-20 13, 2002	11		-20Dup 13, 2002		Ju	G-40 27, 2003	2
and the second sec	PRG	Result	RL	Qual	Result	RL	Quai	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (ag/L)	1				-				1.1	1.1			1.1	-								
1.3,5-Trinitrobenzene	1100 (c)	<	0.69	U	170	20	1	200	29	1	5	0.71		(1600)	29		(1600)	22		<	0.47	U
1.3-Dinitrobenzene	1 (b)	<	0.69	U	(16)	20	3	(24)	29	J	(5)	0.71		(29)	29	1	(25)	22		<	0.47	U
2.4,6-Trinitrotoluene	2 (b)	<	0.69	U	(1300)	20	1	(1400)	29	5	(250)	36		(50)	29	1	(47)	22		<	0.47	Ú
2.4-Dinitratoluene	5 (d)	<	0.69	U	(30)	20	j	(42)	29	3	(12)	0.71		(97)	29	1	(91)	22	J	<	0.47	U
2,6-Dinitratoluene	5 (d)	<	0.69	U	<	20	U	<	29	UJ	<	0.71	U	(170)	29		(150)	22	1.21	<	0.47	U
2-Amino-4,6-dinitrotoluene	NA	<	0.69	U	58	20	1	59	29	1	79	0.71	1.201	43	29	1	38	22	1	<	0.47	Ű
4-Amino-2,6-dinitrotoluene	NA	<	0.69	U	69	20	T I	68	29	1	54	0.71	1	21	29	- â - I	20	22	1	e	0.47	Ū.
4-Nitrotoluene	NA	<	0.69	U	<	20	UJ	<	29	UJ	<	0.71	U.	<	29	u	<	22	ũ	~	0.47	U
HMX	400 (b)	<	0.69	U	(940)	20	1	(1000)	29	1	(480)	36		(1800)	29	Ĵ.	(1600)	22	ĩ		0.47	ŭ
MNX	NA	1.1	0.86	2	<	20	U	<	29	UJ	<	0.71	0	<	36	Ū.	<	28	H	e	0.47	Ŭ.
RDX	2 (b)	(16)	0.69	100	(5400)	78	Ĩ	(4700)	88	1	(1400)	36	~	(14000)	290		(14000)	220		č	0.47	Ŭ
NA PARAMETERS (ug/L)				_					-													
Alkalinity	NE	170000	8000	-	92000	8000	1.00	92000	8000	100	350000	8000		260000	8000		260000	8000	and the second s	470000	8000	
Ammonia	NE	<	10	U	50	10		30	10		<	10	0	300	10		380	10	1.00	50	10	
Carbon Dioxide	NE	74800	C		40480	C		40480	C		154000	C		114400	Ċ		114400	c		206800	C	
Chloride	NE	2000	1000	100	3000	1000		3000	1000	() () ()	3000	1000	1.00	11000	10000		12000	10000	1.000	2000	1000	
Nitrate + Nitrite as N	NE	<	10	U	11000	100	1.1	11000	100		2100	20		96000	1000	1.1	89000	1000		320	10	
Ortho-Phosphare	NE	<	1000	Ū	<	1000	UJ	<	1000	UJ	<	1000	U	<	1000	U	<	1000	U	<	1000	U
Sulfate	NE	26000	10000	2.1	48000	10000	- 25	48000	10000	100	9000	1000	1.2	61000	10000	20	61000	10000	2.1	30000	10000	1.1
Sulfide	NE	3000	1000	100	<	1000	U	<	1000	U	<	1000	Û	<	1000	U	<	1000	U	<	1000	U
Total Kieldahl Nitrogen	NE	<	300	U	<	300	U	900	300	1	700	300		<	300	U	<	300	u	500	300	
Total Organic Carbon	NE	2100	1000		6900	1000	-	7000	1000	1.1	3700	1000	1.001	7200	1000	-	6800	1000		<	1000	U
PERCHLORATE (ug/L)				-			-				-	-	1000							· · · · · · · · · · · · · · · · · · ·	-	_
Perchlorate	18 (c)	<	4	UJ	<	4	U				<	4	U	<	4.	UJ				1		
VOLATILE ORGANIC	1.1.1										1.											
COMPOUNDS (#g/L)	1.00										1100		10.11			0.00	1.20.1					
Freon113	59000 (c)												1000	3900	150	10.00	3700	150				

RL= Reporting Limit Qual= Qualifier J=Estimated

R=Rejected

F=presence of interference

UJ=Estimated Nondetect U=Nondetect () = Above PRG µg/L= microgram per liter C=Calculated value equivalent to alkalinity RL (d) 10" Risk Level X 0.44

(PRG): Preliminary Remediation Goal; (a) Maximum Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs NA= Not Available NE = Not Evaluated

TABLE 4.8 SUMMARY OF CHEMICALS DETECTED AT LINE 800 / PINK WATER LAGOON SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	11.0	Ju	G-41 n 26, 2002		Jur	G-42 13, 200	2	Jun	G-43 26, 2002			G-44 30, 200	2	Ju	G-45 n 30, 2002		Ju	G-46 n 30, 200		Jur	G-47 29, 200	2
a de la construcción de la constru	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)	100.000					-			1. 1		10.000	-							-		-	
1.3.5-Trinitrobenzene	1100 (c)	<	1.1	U	<	0.79	U	<	0.79	U	<	0.55	U	<	0.78	U	<	0.66	U	<	0.88	U
1.3-Dinitrobenzene	1 (b)	<	1.1	U	<	0.79	U	<	0.79	U	<	0.55	U	<	0.78	U	<	0.66	U	<	0.88	U
2.4.6-Trinitrotoluene	Z (b)	<	1.1	U	<	0.79	U	<	0,79	U	<	0.55	U	<	0.78	U	<	0.66	U	<	0.88	U
2.4-Dinitrotoluene	5 (d)	<	1.1	U	<	0.79	U	<	0.79	U	<	0.55	U	<	0.78	Ū.	<	0.66	- u	<	0.88	Ū.
2.6-Dinitrotoluene	5 (d)	<	1.1	U	<	0.79	U	<	0.79	U	<	0.55	U.	<	0.78	U.	<	0.66	Ū.	<	0.88	U
2-Amino-4,6-dinitrotoluene	NA	<	1.1	Û.	<	0.79	U	<	0.79	U	<	0.55	U	<	0.78	U	<	0.66	ũ	<	0.88	U
4-Amino-2,6-dinitrotoluene	NA	<	1.1	Ű	<	0.79	Ũ	<	0.79	U.	e	0.55	U	~	0.78	II.	~	0.66	U.	<	0.88	Ŭ
4-Nitrotoluene	NA	<	1.1	U		0.79	Ű		0.79	Ŭ		0.55	Ĩ.	2	0.78	11	<	0.66	n.	<	0.88	Ŭ
нмх	400 (b)	e	1.1	U.	2	0.79	ŭ	2	0.79	ŭ	2	0.55	ü	2	0.78	n.	e i	0.66	ň	<	0.88	Ŭ
MNX	NA	<	1.1	Ŭ.	<	0.99	ŭ		0.79	ŭ	-	0.55	ii .		0.78	ň	è	0.66	11	è	0.88	Ŭ
RDX	2 (b)	è	1.1	ŭ	è	0.79	ŭ	è	0.79	n I	2	0.55	ŭ	2	0.78	ŭ	- Z	0.66	- ŭ	2	0.88	ŭ
NA PARAMETERS (Ug/L)	1			-		44.545			46.00												0.00	-
Alkalinity	NE	240000	8000		430000	8000		300000	8000	_	300000	8000		260000	8000		490000	8000		220000	8000	
Ammonia	NE	220	10	10.01	270	10		190	10	100	430	10		110	10		60	10		<	10	u
Carbon Dioxide	NE	105600	c		189200	C	S. 10	132000	C		132000	C		114400	C		215600	C		96800	C	
Chloride	NE	15000	10000	1.1.1		1000	U	3000	1000		2000	1000		17000	10000		1000	1000		48000	10000	
Nitrate + Nitrite as N	NE	<	10	U	2	10	ŭ	120	10		450	10		<	10	U	150	10		3300	50	
Ortho-Phosphate	NE	<	1000	Ŭ	2	1000	U	<	1000	U	<	1000	UI	è	1000	ŭ	<	1000	U	<	1000	UI
Sulfate	NE	39000	10000		9000	1000	~	7000	1000	~	11000	1000		28000	10000		60000	10000	~	30000	10000	01
Sulfide	NE	<	1000	U	<	1000		<	1000	U	<	1000	0	<	1000	u	<	1000	U	<	1000	U
Total Kjeldahl Nitrogen	NE	1000	300	ě	-	300	U	-	300	Ŭ	600	300		2	300	ŭ	1000	300	0	2	300	ŭ
Total Organic Carbon	NE	3200	1000		1700	1000		< C	1000	Ŭ	1700	1000		2200	1000		1700	1000		à	1000	ŭ
PERCHLORATE (ug/L)		1													1.27		1.00			-		- 12
Perchlorate	18 (c)													-								
VOLATILE ORGANIC										-							1.0.00					
COMPOUNDS (ag/L)														1.5.1								
Freen113	59000 (c)													6	3					-		

R = Rejected

RL= Reporting Limit Qual= Qualifier I=Estimated

F=presence of interference

UJ = Estimated Nondetect U=Nonderect () = Above PRG µg/L = microgram per liter C=Calculated value equivalent to alkalinity RL. X 0.44

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminam Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10" Risk Level NA = Not Available NE= Not Evaluated

SUMMARY OF CHEMICALS DETECTED AT LINE 800 / PINK WATER LAGOON SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	1.1	Ju	G-48 25, 2003	e i	Ju	G-56		Ju	G-57 n 29, 2002		Ju	G-58 28, 2002			AW-78 28, 200	12		AW-79	12
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)				-							11.1				-			-	
1,3,5-Trinitrobenzene	1100 (c)	<	0.39	υ	<	0.48	U	<	0.64	U	<	0.53	U	<	1.2	U	<	0.7	U
1,3-Dinitrobenzene	I (b)	<	0.39	U	<	0.48	U	<	0.64	U	(1.5)	0.53	100	<	1.2	U	<	0.7	U
2,4,6-Trinitrotoluene	2 (b)	<	0.39	U	<	0.48	U	<	0.64	U	<	0.53	U	<	1.2	U	<	0.7	U
2,4-Dinitrotoluene	5 (d)	<	0.39	Ŭ	<	0.48	U	<	0.64	U	<	0.53	U	<	1.2	U.	<	0.7	U
2,6-Dinitrotoluene	5 (d)	<	0.39	U	e	0.48	Ū.	0.47	0.64	Ĵ.	(9.4)	0.53		<	1.2	U	<	0.7	U
2-Amino-4.6-dinitrotoluene	NA	<	0.39	U	<	0.48	Ū.	<	0.64	U	<	0.53	U	<	1,2	U.	<	0.7	U
4-Amino-2,6-dinitrotoluene	NA	<	0.39	Ŭ	<	0.48	ŭ	0.75	0.64		<	0.53	Ŭ	<	1.2	Ŭ	<	0.7	Ŭ
4-Nitrotoluene	NA	<	0.39	U	<	0.48	Ũ	<	0.64	U	<	0.53	ũ	<	1.2	U.	<	0.7	U
HMX	400 (b)	<	0.39	Ŭ	4.6	0.48	ĩ	21	0.64		250	13	~	2	1.2	Ŭ	<	0.7	Ũ
MNX	NA	<	0.39	ũ	1.3	0.6	1	6.6	0.64		12	0.53		<	1.2	Ŭ.	2	0.7	ŭ
RDX	2 (b)	<	0.39	ŭ	(77)	4.8		(710)	32		(2000)	130		<	1.2	ŭ	<	0.7	Ŭ
NA PARAMETERS (UR/L)		1.00										-					· · · · · · · · · · · · · · · · · · ·	1.1	
Alkalinity	NE	380000	8000		330000	8000		210000	8000		300000	8000		460000	8000		380000	8000	
Ammonia	NE	<	10	U	160	10		<	10	U	230	10		200	10		350	10	
Carbon Dioxide	NE	167200	C		145200	C		92400	C		132000	C		202400	C	10.11	167200	C	
Chloride	NE	<	1000	U	2000	1000		23000	10000		9000	1000		<	1000	U	<	1000	U
Nitrate + Nitrite as N	NE	80	10		550	10		43000	10		23000	200		<	10	υ	<	10	U
Onho-Phosphate	NE	<	1000	U	<	1000	U	<	1000	UJ	<	1000	U	<	1000	U	<	1000	U
Sulfate	NE	22000	10000		30000	10000	100	32000	10000		40000	10000		11000	1000		6000	1000	
Sulfide	NE	<	1000	U	<	1000	U	<	1000	U	<	1000	Û.	<	1000	U	<	1000	U
Total Kjeldahl Nitrogen	NE	<	300	U	400	300		<	300	υ	<	300	U	400	300		600	300	
Total Organic Carbon	NE	<	1000	U	1400	1000		2700	1000		3500	1000		1500	1000		1300	1000	
PERCHLORATE (ug/L)	NE	1									1.	-		1					
Perchlorate	18 (c)			1000	1	_					<	4	U		_			_	
VOLATILE ORGANIC COMPOUNDS														· · · · · · · · · · · · · · · · · · ·			1		
(#g/L)	A STATISTICS																	1 A.I	
Freon113	59000 (c)				· · ·		_							2			<	3	U

RL= Reporting Limit Qual = Qualifier J=Estimated R=Rejected

F=presence of interference

 UJ = Estimated Nondetect
 (PRG): Preliminary

 U = Nondetect
 (a) Maximum Conta

 (b) = Above PRG
 (b) Health Advisory

 µg/L= microgram per liter
 (c) Region IX PRG

 C=Catculated value equivalent to alkalinity RL
 (d) 10⁴ Risk Level

 X 0.44
 NA = Not Available

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁴ Risk Level NA = Not Available NE= Not Evaluated

TABLE 4.9 SUMMARY OF CHEMICALS DETECTED AT EAST BURN PADS SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED			P-MW1 27, 200			BP-MW2			P-MW3 10, 200			EDA-01 10, 2002	2		DA-02 26, 200	2		DA -03 25, 2002			A-03Dup 25, 200	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Quai	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L) HMX MNX RDX	400 (b) NA 2 (b)	~ ~ ~	1.4 1.4 1.4	U U U	~ ~ ~	0.39 0.49 0.39	U U U	16 < (29)	1.1 1.4	1 U	~ ~ ~	0.42 0.52 0.42	UUU	14 2.7 (70)	0.36 0.36 3.6	J	7.2 < (6.7)	0.48 0.48 0.48	n 1	8 < (7.3)	0.65 0.65 0.65	J
METALS (xg/L) Arsenic Barium Chromium Selenium	10 (a) 2000 (a) 100 (a) 50 (a)	< 122 < <	10 200 10 10	U J U	< 310 5 <	10 200 10 10	U J U	< 43.8 1.8 <	10 200 10 10	1 1 U	< 59.8 <	10 200 10 10	U J U	< 113 < <	10 200 10 10	U U U	< 102 0.91 2.5	10 200 10 10	1 1 1	< 96.3 0.52 <	10 200 10 10	U J U
NA PARAMETERS (rg/L) Alkalinity Anmonia Carbon Dioxide Chloride Nirate + Nitrite as N Sulfate Sulfate Sulfate Total Kjeldah Nitrogen Total Organic Carbon	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 	<	1000	U	410000 3800 180400 9000 < 4000 28000 3600 3000	8000 10 C 1000 10 1000 1000 300 1000	U	200000 10 88000 1000 1100 20000 38000 < <	8000 10 C 1000 10 10000 1000 300 1000	ប ប	340000 < 149600 < 320 53000 29000 < <	8000 10 C 1000 10 10000 1000 300 1000	ບ ບ ບ	410000 < 180400 4000 1500 40000 < < 1000	8000 10 C 1000 10 10000 1000 300 1000	U U U	290000 < 127600 4000 980 38000 < < < <	8000 10 C 1000 10 1000 1000 300 1000	U U U U	290000 < 127600 4000 990 39000 < < < < <	8000 10 C 1000 10 10000 1000 300 1000	ប ប ប
VOLATILE ORGANIC COMPOUNDS (sg/L) Trichloroethylene Freonl 13 Key:	5 (a) 59000 (c)	< <	3 3	ប ប	~ ~	3 3	ប ប	~ ~	3 3	ប ប	~ ~	3	U U	< 9	3 3	U	~ ~	3 3	U U	~ ~	3 3	U U

RL= Reporting Limit Qual= Qualifier J=Estimated

- R = Rejected
- F = presence of interference

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL)

(a) Maximum Containing Level (NAL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁻⁴ Risk Level NA = Not Available NE = Not Evaluated

UJ - Estimated Nonderect U - Nondetect

#g/L = microgram per liter

() = Above PRG

C=Calculated value equivatent to alkalinity RL X 0.44

Polines AAPIGW Mushering Report Aughtical Results/PRO NERP

Na

SUMMARY OF CHEMICALS DETECTED AT EAST BURN PADS SPRING 2002 GROUND WATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	PRG		EDA-04 1 25, 200	2		A-04Dug 25, 200		Jur	G-29 10, 2003	2		AW-04 28, 200	2	-	AW-05 10, 200	2
	FRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)	1.000					1.0		1.00	100							
нмх	400 (b)	140	0.74	3	120	0.44	J	<	0.83	U	<	0.99	U	<	0.35	U
MNX	NA	0.95	0.74	1	0.84	0.44		<	1	U	<	0 99	U	<	0.44	U
RDX	2 (b)	(5.8)	0.74	_	(5.2)	0.44		<	0.83	U	<	0.99	U	<	0.35	U
METALS (ag/L)	and the second					ill mb.					In the second		1.1			
Arsenic	10 (a)	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
Barium	2000 (a)	64.8	200	1	61.7	200	1	58.1	200	1	105	200	1	79.5	200	J
Chromium	100 (a)	0.61	10	J	< 2	10	U	1.6	10	J	<	10	U	<	10	U
Selenium	50 (a)	<	10	U	2	10	1	<	10	U	4.2	10	1	<	10	U
NA PARAMETERS (#g/L)					1	100		1.00	-				1000	in the second		
Alkalinity	NE	430000	8000		440000	8000		84000	8000					240000	8000	
Ammonia	NE	<	10	U	<	10	U	30	10					<	10	U
Carbon Dioxide	NE	189200	С		193600	С	- 51	36960	C					105600	C	
Chloride	NE	3000	1000		3000	1000		1000	1000					1000	1000	
Nitrate + Nitrite as N	NE	2400	20		2400	20		1800	10					<	10	U
Sulfate	NE	53000	10000		52000	10000		22000	10000					31000	10000	
Sulfide	NE	<	1000	U	<	1000	U	35000	1000					36000	1000	
Total Kieldahl Nitrogen	NE	<	300	U	<	300	U	<	300	U				<	300	U
Total Organic Carbon	NE	1700	1000		1700	1000	122	2300	1000		_			<	1000	U
VOLATILE ORGANIC																
COMPOUNDS (#g/L)					1.00						1.00			1.00		
Trichloroethylene	5 (a)	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
Freon113	59000 (c)	<	3	U	<	3	U	<	3	U	13	3		<	3	U
Kev:								1000	1.000					-		-
RL= Reporting Limit	ÚJ =	Estimated h	Vandetec	6 a 1		(PRG):	Prelimin	ary Remedi	ation Goa	1;						
Qual = Qualifier	U=)	Vondetect				(a) Max	imun Co	ntaminant L	evel (MC	CL)						
I=Estimated	1	= Above F	RG					ory Level (
R = Rejected		= microgra		er			ion IX PF									
	PB G					2.1 11.0									S	

R = Rejected F = presence of interference

(c) Region IX PRGs (d) 10⁴ Risk Level NA= Nor Available NE= Not Evaluated

C = Calculated value equivalent to alkalinity RL X 0.44

SUMMARY OF CHEMICALS DETECTED AT EAST BURN PADS SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	2.1		AW-06 25, 2003	2		JAW-07 in 10, 2002			AW-614 n 25, 2002			AW-64	
1	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)			1.1	12.0								1.1	-
HMX	400 (b)	32	0.35	1	<	0.73	U	7.5	0.96	J	<	1.1	υ
MNX	NA	<	0.35	U	<	0.91	U	<	0,96	U	<	1.4	U
RDX	2 (b)	<	0.35	U	<	0.73	U	(6.6)	0.96	1.201	<	1.1	U
METALS (kg/L)		1.22		1.1				1.00		1.0	1000	1.1.1	
Arsenic	10 (a)	6.5	10	1	<	10	U	<	10	U	<	10	U
Barium	2000 (a)	144	200	1	62.9	200	1	119	200	1	67.4	200	
Chromium	100 (a)	1.1	10	1	<	10	υ	<	10	U	<	10	UU
Selenium	50 (a)	<	10	U	<	10	U	2	10	1	<	10	U
NA PARAMETERS (xg/L)		1000	-		1		-	1	-				
Alkalinity	NE	370000	8000		240000	8000		290000	8000		240000	8000	
Ammonia	NE	160	10		20	10		<	10	υ	<	10	U
Carbon Dioxide	NE	162800	C		105600	C		127600	C	10.5	105600	C	
Chloride	NE	2000	1000		1000	1000		4000	1000		<	1000	U.
Nitrate + Nitrite as N	NE	5	10	U	<	10	U	860	10		550	10	1.5
Sulfate	NE	48000	10000		17000	1000		35000	10000		35000	10000	
Sulfide	NE	<	1000	U	22000	1000		<	1000	U	16000	1000	
Total Kieldahl Nitrogen	NE	600	300	~	1600	300		<	300	Ŭ	<	300	U
Total Organic Carbon	NE	1500	1000		1400	1000		é l	1000	ŭ	<	1000	Ũ
VOLATILE ORGANIC											-		
COMPOUNDS (#g/L)													
Trichloroethylene	5 (a)	4	3		<	3	U	<	3	U	<	3	U
Freon113	59000 (c)	<	3	U	<	3	U	<	3	U	<	3	U

RL= Reporting Limit Qual = Qualifier J=Estimated R=Rejected F=presence of interference

UJ=Estimated Nondetect U=Nondetect () = Above PRG µg/L= microgram per liter C=Calculated value equivalent to alkalinity RL X 0.44 (PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁷ Risk Level NA= Not Available NE= Not Evaluated

TABLE 4.10 SUMMARY OF CHEMICALS DETECTED AT PESTICIDE PIT SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	122	SUMP June, 2002	100
	Result	RL	Qual
	1	DRY	

RL= Reporting Limit Qual= Qualifier

FIELD ID DATE COLLECTED			C-00-1 n 01, 200	2		C-00-2 02, 2002			C-00-3 y 31, 2002			C95-1 31, 2002			5-1Dup 31, 2002			C95-2 01, 2002			MU-99-1 y 31, 200	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (µg/L)	11 m 24 m	100.00	100	1.1	-		C	19. Carlos - 19.			10 million 10							100	10.00	-		
2,4,6-Trinitrotoluene	2 (b)	<	0.83	U	<	0.53	U	<	0.51	U	(4.7)	0.61	1	(5.3)	0.82	0.1	<	0.6	U	<	0.84	υ
2,4-Dinitrotoluene	5 (d)	<	0.83	υ	<	0.53	U	<	0.51	U	<	0.61	U	<	0.82	U	<	0.6	U	<	0.84	U
2.6-Dinitrotoluene	5 (d)	<	0.83	U	<	0.53	U	<	0.51	U	2.2	0.61	1	3.7	0.82		<	0.6	U	<	0.84	U
2-Amino-4,6-dinitrotoluene	NA.	<	0.83	U	<	0.53	U	<	0.51	U	10	0.61	J	11	0.82	Ĵ.	<	0.6	U	<	0.84	U
4-Amino-2,6-dinitrotoluene	NA	<	0.83	U	<	0.53	U	<	0.51	U	9.1	0.61	1	10	0.82	1	<	0.6	U	<	0.84	U
Nitrobenzene	3.4 (c)	<	0.83	U	<	0.53	U	<	0.51	U	<	0.61	U	<	0.82	U	<	0.6	U	<	0.84	U
RDX	2 (b)	<	0.83	0	<	0.53	U	<	0.51	U	(5.9)	0.61	1	(5.3)	0.82	1	<	0.6	U	<	0.84	U
METALS (ug/L)		A. 2																				
Arsenic	10 (a)	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
Barium	2000 (a)	167	200	1	146	200	- î -	524	200	1.0	172	200	- î -	143	200	1	143	200	1	236	200	3
Chromium	100 (a)	1.1	10	1.1	0.83	10	- i	<	10	U	<	10	U	<	10	Û	1.9	10	Î.	<	10	U.
Copper	1400 (c)	0.6	25	5	<	25	UJ	1.7	25	J	<	25	U	<	25	ŭ	<	25	Ú.		10	
Lead	15 (a)	<	10	Ů	~	10	Ŭ	<	10	Ū.	~	10	ŭ	×	10	U	ż	10	U	<	10	U
Manganese	880 (c)	90.7	15	0	è.	15	U	76.2	15	v	3.9	15	ŭ	3.1	15	J	13.7	15	ĭ	~	10	U
Nickel	100 (b)	2	40		è.	40	Ŭ	<	40	U	2	40	1	<	40	ů	<	40	ů.			
Selenium	50 (a)	< C	10	ú	è	10	ŭ	< C	10	ŭ	<	10	Ú.	2	10	U	<	10	Ŭ	1.2	10	U
Silver	100 (b)	è.	10	Ŭ			U		10	U	č	10	Ŭ	1 Sec. 1	10		1	10	ŭ	<	10	U
Uranium	20 (b)	5.9		0	<	10	0	<						<		U	<			<	10	U
Vanadium	260 (c)	1.9	100	4 1	3.3	100	U	4.8	100	1	8.4	100	J	7.8	100	J	1.1	100	1			
	200 (C)	1.9	30	-	<	30	0	0.8	50	4	<	50	0	<	50	0	1.9	30	1			
PERCHLORATE (µg/L) Perchlorate	18 (c)	<	4	UJ	-			<	4	U	<		U	1			<		IJ			
OTHER PARAMETERS (#g/L)	10 (0)		4	01	-					03	~		03			_		4	01			
Total Organic Carbon	NE	1800	1000		<	1000	U	<	1000	U										100 million (100 million)		
Total Organic Halides	NE	70	50		< X	50	ŭ	×	50	Ŭ				-								
SEMIVOLATILE ORGANIC	112	10	50			30	Ų.		50	0						-				-		
COMPOUNDS (#g/L)																				1.000		
	2/00/14				1. 12. 1	1.1		1 /2		in the	1.1.1	1.1	1.00			U		12		1.10		U
2.4.5-Trichlorophenol	3600 (c)	<	5	U	<	5	U	<	5	U	<	5	U	<	5		<	5	U	<	5	
2,4,6-Trichlorophenol	6.1 (c)	<	5	υ	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
2,4-Dichlorophenol	110 (c)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
2,4-Dimethylphenol	730 (c)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
2,4-Dinitrophenol	73 (c)	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
2,4-Dinitrotoluene	5 (d)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
2,6-Dinitrotoluene	5 (d)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
2-Chlorophenol	30 (c)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
2-Methylphenol	1800 (c)	<	5	U	<	5	υ	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
2-Nitrophenol	NA	<	5	U	<	5	υ	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
4,6-Dinitro-2-methylphenol	NA	<	5	U	<	5	Ų	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
4-Chloro-3-methylphenol	NA	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	υ	<	5	U
4-Methylphenol	180 (c)	<	5	U	<	5	U	<	5	U	<	5	υ	<	5	U	<	5	U	<	5	υ
4-Nitrophenol	290 (c)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	υ	<	5	υ
Benzoic acid	150000 (c)	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
Bis(2-ethylhexyl) phthalate	6 (a)	<	5	Ū.	2	5	1	<	5	U	<	5	U	<	5	U	<	5	U	4	5	1
Nitrobenzene	3.4 (c)	<	5	ΰ	<	5	Ú	<	5	U	<	5	U	<	5	U	<	5	υ	<	5	U
Pentachlorophenol	1(2)	< C	5	Ŭ	<	5	Ü	< C	5	Ű	<	5	Ũ	<	5	Ū.	<	5	U	<	5	U
Phenol	4000 (b)	~	5	ŭ	<	5	ŭ	<	5	ŭ	<	5	Ū.	<	5	ũ	<	5	U	<	5	U

FIELD ID DATE COLLECTED			C-00-1 01, 200)2		-00-2)2, 2002	11		00-3			05-1 1, 2002	6		1Dup 1, 2002	et 1		95-2 1, 2002		1.00	MU-99-1 y 31, 20	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
VOLATILE ORGANIC COMPOUNDS (µg/L)									100													
			1.0		1.1	1.1	1.1	5	1.12				100	1.1	-Q.,	- 24	1.6	1.2	100	1.1	1.2	
1.1.1-Trichloroethane	200 (a)	19	3		<	3	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
1.1-Dichloroethane	810 (c)	3	3		<	3	U	<	3	U	<	3	U	<	3	U	<	3	U	5	3	U
1,1-Dichloroethene	7 (2)	(99)	3		<	3	υ	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
1,2-Dichloroethane	5 (a)	(12)	3		<	3	U	<	3	U	<	3	U	<	3	υ	<	3	U	<	3	U
2-butanone	1900 (c)	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	4	10	1
4-isopropyltoluene	NA	<	3	υ	<	3	U	<	3	U	<	3	U	<	3	U	<	3	υ	11.2		
Acetone	610 (c)	<	10	U	<	10	υ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
Benzene	5 (a)	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
Chloroethane	4.6 (c)	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
cis-1.2-Dichloroethene	70 (a)	<	3	U	<	3	Ū.	<	3	Ű.	<	3	Ū.	<	3	11	<	3	U	<	3	Ū.
Freon113	59000 (c)	<	3	U	<	3	U	6	3	U	<	3	U.	~	3	11	<	3	u	<	- 3	ŭ
Toluene	1000 (a)	<	3	ŭ	<	3	Ũ	<	3	U	<	3	Ŭ	<	3	ũ	<	3	Ŭ	<	3	U
Trichloroethylene	5 (a)	(18)	3	- T	e	3	ũ	e .	3	ŭ		3	U.	<	3	Ŭ.	1	3	ũ	2	3	Ŭ.
Vinyl Chloride	2 (a)	5	3	U	2	4	ũ	6	1	ũ	2	2	Ŭ	2	1	ũ.	2	1	ŭ	2	3	. II
Xylenes	10000 (b)	<	3	ũ	<	3	ŭ	<	3	ŭ	<	3	Ũ	<	3	ŭ	< C	3	ŭ	<	3	Ŭ
RADIONUCLIDES (pCi/L)	-				1		-							11	-		1					
Gross Alpha	15 (a)	4.1 = 1.5	2.1		2.9 ± 1.6	2.4		3.9 ± 1.8	2.6		<	3.4	U	4.0 ± 2.1	3.2		3.1±1.5	2.1				
Gross Beta	50 (a)	3.4 ± 1.4	2.2		3.2±1.4	2.2		3.5±1.5	3.5		<	3.3	U	<	2.9	U	2.7±1.3	2,1				
Lead 212	NA	4.2 ± 3.4	3.1		<	3	U	<	3.4	υ	<	3.1	Ŭ	<	3	ŭ	<	3	U			
Potassium - 40	NA	<	17	U	93.9 ± 43.2	16.4	~	49.5 ± 45.0	18		53.8 ± 42.2	17.1	2	30.4 ±44.2	17	-	44.7=43.5	17.2	1			
Uranium - 235	NA	č	0.2	U.	<	0.3	U	<	0.2	U	6 1.0 L 1.1.1.	0.4	11	<	0.3	11	0.2 ± 0.2	0.2		10		

Key: RL= Reporting Limit

Qual = Qualifier J=Estimated

R = Rejected

F=presence of interference

UJ = Estimated Nondetect U = Nondetect () = Above PRG

µg/L = microgram per liter pCi/L = picoCuries per liter

(PRG): Preliminary Remediation Goal: (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 104 Risk Level NA = Not Available NE = Not Evaluated

S

~

FIELD ID DATE COLLECTED			MU-99-1 y 30, 200			MU-99-3			MU-99-2			MU-99-3			ET-3 30, 200	12	Ma	G-04 y 30, 20	02		G-05 02, 2002	2
American Strength Strength Strength	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)	1	100		1.11	1.00			1.1	1.2					1.000	1.00	100					- T	1.00
2,4,6-Trinitrotoluene	2 (b)	<	0.99	U	<	0.51	U	<	0.78	U	<	1	υ	<	0.71	0				<	1.2	U
2.4-Dinitrotoluene	5 (d)	<	0.99	U	<	0.51	U	<	0.78	U	<	1	U	(16)	0.71	1				<	1.2	U
2.6-Dimitrotoluene	5 (d)	<	0.99	U	<	0.51	υ	<	0.78	U	<	1	U	(24)	0.71	1				<	1.2	U
2-Amino-4,6-dinitrotoluene	NA	<	0.99	U	<	0.51	U	<	0.78	U	<	1	U	<	0.71	U				<	1.2	U
4-Amino-2,6-dinitrotolucne	NA	<	0.99	U	<	0.51	U	<	0.78	U	<	1	U	<	0.71	U				<	1.2	U
Nitrobenzene	3.4 (c)	<	0.99	Ú	<	0.51	U	<	0.78	U	<	1	U	(13)	0.71	1				<	1.2	U
RDX	2 (b)	<	0.99	Û	<	0.51	U	<	0.78	U	<		Ŭ	(4.5)	0.71	-1	1. A			<	1.2	U
METALS (ug/L)														1 · · · · · · · · · · · · · · · · · · ·		-						
Arsenic	10 (a)	<	10	U	<	10	U	<	10	U	<	10	U	(15.6)	10		<	10	U	<	10	U
Barium	2000 (a)	71.4	200	ĩ	243	200	Ĵ.	64.1	200	J	110	200	3	554	200		176	200	1	252	200	
Chromium	100 (a)	3	10	Ť.	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
Copper	[400 (c)	115.1			2.		~	1.1		-				7	25	- î -	0.97	25	Ĩ	<	25	UI
Lead	15 (a)	4.1	10		3	10		2.7	10	1	3	10	11	× I	10	Ű	<	10	U	<	10	U
Manganese	880 (c)					10			14			14	1.5	851	15		12.3	15	Ĩ	353	15	
Nicket	100 (b)													24.6	40	- 411	3	40	i i	2.8	40	1
Selenium	.50 (a)	<	10	U	<	10	U	<	10	U	5.9	10	1	<	10	Ú	×	10	Ű	<	10	Ű
Silver	100 (b)		10	Ŭ	1.	10	U I		10	U	<	10	Ú	è è	10	ŭ	2	10	u	è	10	U
Uranium		<	to.	0	0.41	10		<	10	U.		10	U.	1.3	100		1.9	100		8.5	100	i
Vanadium	20 (b) 260 (c)							and the second second						3.7	50	1	1.9	50	- 1 -	6.2	50	ú
	200 (C)	-	_	-		_	_	-						3,1	- 30		1.0	- 00	1	~	30	0
PERCHLORATE (ug/L) Perchlorate	18 (c)										1			<	20	U						
OTHER PARAMETERS (##/L)	10(0)		_		-		_							-	20	0						_
Total Organic Carbon	NE													1.00			1300	1000		1.0		
Total Organic Halides	NE																<	50	U			
SEMIVOLATILE ORGANIC	146	-	_		-		_				-			-			-		v	-		
																	1.1		1000			
COMPOUNDS (#g/L)		1.15						1			1.1				5	1.0		5	U	<	5	U
2.4.5-Trichloraphenol	3600 (c)	<	5	U	<	5	U	<	5	U	<	5	UU	3	5	Û	<	5	U		ŝ	Ŭ
2,4,6-Trichlorophenol	5.1 (c)	<	5	U	<	5	U	<		U	<	5		<		0	<		(-	<	5	Ŭ
2,4-Dichlorophenol	110 (c)	<	5	U	<	5	U	<	5	U	<	5	U	3	5		<	5	U	<		U
2,4-Dimethylphenol	730 (c)	<	5	U	<	5	υ	<	5	U	<	5	0	<	5	U	<	5	U	<	5	
2,4-Dinitrophenol	73 (c)	<	9	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
2,4-Dinitrotolucne	5 (d)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	u	<	5	U
2.6-Dinitrotoluene	5 (d)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	υ
2-Chlorophenol	30 (c)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
2-Methylphenol	1800 (c)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	u	<	5	U	<	5	U
2-Nitrophenol	NA	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	Ų
4,6-Dinitro-2-methylphenol	NA	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
4-Chloro-3-methylphenol	NA	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
4-Methylphenol	180 (c)	<	5	U	<	5	U	<	5	U	<	5	U	12	5		<	5	u	<	5	U
4-Nitrophenol	290 (c)	<	5	U	<	5	U	<	5	u	<	5	U	<	5	υ	<	5	U	<	5	u
Benzole acid	150000 (c)	<	9	Ū	<	10	U	<	10	U	<	10	U	38	10		<	10	U	<	10	U
Bis(2-ethylhexyl) phthalate	6 (a)	2	5	Ŭ	(9)	5	1.1	<	5	ŭ	<	5	Ũ	<	5	U	<	5	U	<	5	U
Nitrobenzene	3.4 (c)	è	5	ŭ	<	ŝ	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
Pentachlorophenol	1(a)	× ×	5	U	2	5	U	i i	5	Ŭ	<	5	ũ	(1600)	480		<	5	U	<	5	U
Phenol	4000 (b)	è	ŝ	Ŭ	2	5	U.	i i	5	ŭ	i i	5	ŭ	23	5		~	5	Ŭ	<	5	ũ
1 10-10/1	4000 (0)	-	-	0	-	~				~	-	-							_			

Page 3 of 9

FIELD ID DATE COLLECTED			MU-99-			MU-99-			MU-99-			MU-99-			ET-3 30, 20	02	Ma	G-04 y 30, 20	02		G-05 02, 2002	2
	PRG		RL		Result		Qual	Result			Result			Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
VOLATILE ORGANIC COMPOUNDS (ag/L)	-		1					i						18							1	
1,1,1-Trichloroethane	200 (a)	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U				<	3	U
1.1-Dichloroethane	810 (c)	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U				<	3	U
1.1-Dichloroethene	7 (a)	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U				<	3	U
1.2-Dichloroethane	5 (a)	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U				<	3	U
2-butanone	1900 (c)	<	10	U.	<	10	U	<	10	U	<	10	Ū	<	10	U				<	10	U
4-isopropyltaluene	NA	1.0			1.00			1.1			1.1.5			2	3	1				<	3	U
Accione	610 (c)	<	10	U	<	10	U	<	10	U	<	10	U	25	10	1.5.1				<	10	U
Benzene	5 (a)	<	3	U	<	3	U	<	3	0	<	3	U	2	3	3				<	3	U
Chloroethane	4.6 (c)	<	3	U	<	3	U	<	3	U	<	3	U	2	3	J				<	3	U
cis-1,2-Dichloroethene	70 (a)	<	3	U	<	3	U	<	3	U	<	3	υ	2	3	J				<	3	U
Freon113	59000 (c)	<	3	U	<	3	U	<	3	U	1	3	1	<	3	U				<	3	U
Toluene	1000 (a)	<	3	U	<	3	Ŭ.	<	3	U	<	3	U	. 4	3	1				<	3	U
Trichloroethylene	5 (a)	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U				<	3	U
Vinyl Chloride	2 (a)	<	3	U	<	3	U	<	3	U	<	3	U	(3)	3	1				<	3	U
Xylenes	10000 (b)	<	3	U	<	3	U	<	3	U	<	3	U	2	3	I				<	3	U

Key: RL= Reporting Limit Qual= Qualifier

J = Estimated

R=Rejected F=presence of interference

UJ = Estimated Nondetect U=Nondetect µg/L= microgram per liter () = Above PRG

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁴ Risk Level NA= Not Available NE= Not Evaluated

Plan AAPGW Steening Equition frink Edult (PDG 100 Amer

FIELD ID DATE COLLECTED			G-07			G-6R 29, 200	2		y 31, 200			MW1D			A-MW2			AW-26	12		AW-27	2
	PRG	Result		Qual	Result	RL		Result		Qual	Result	RL	Oual	Result		Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)				-		-			1.1	-			-		100							
2.4,6-Trinitrotoluene	2 (b)							<	0.91	U	<	0.81	U	<	1	U	<	0.73	U			
2.4-Dinitrotoluene	5 (d)							<	0.91	U	<	0.81	U	<	1	U	<	0.73	U			
2.6-Dinitrotoluene	5 (d)							<	0.91	Û.	<	0.81	υ	<	1	U	<	0.73	U			
2-Amino-4.6-dinitrotolucne	NA							<	0.91	U	<	0.81	U	<	1	Ũ	<	0.73	U			
4-Amino-2,6-dinitrotolucne	NA							<	0.91	Ŭ	<	0.81	ŭ	× ×		ũ	<	0.73	Ŭ			
Nitrobenzene	3.4 (c)							<	0.91	Ŭ	<	0.81	Ŭ	<	1	U	<	0.73	ŭ			
RDX	2 (b)							×	0.91	Ŭ	2	0.81	ŭ	× ×	- G (1	Ŭ	× ×	0.73	ŭ			
METALS (#g/L)	-37.	-	_									0.01						0.74	-	-		
Arsenic	10 (a)				<	10	U	6.5	10	1.1	5.8	10	1	<	10	U	<	10	U			
Barium	2000 (a)				110	200	J	310	200	i i	294	200	î	61	200	1	171	200	j.	V		
Chromium	100 (a)	1			1.	10	Ú	3	10	÷.	4.5	10	- 1			i			U.			
Copper	1400 (c)				<			3	10		4.5	10		0.82	10		<	10				
					0.79	25	1			100		1.1		1.1.1.1			0.86	25	1			
Lead	15 (a)				<	10	U	<	10	U	<	10	U	<	10	U	<	10	U			
Manganese	880 (c)				84.9	15	1.00										217	15				
Nickel	100 (b)				<	40	U			1.1	1.40.0			1.1			5	40	1			
Selenium	50 (a)				<	10	U	<	10	U	<	10	U	<	10	U	<	10	U			
Silver	100 (b)				<	10	υ	<	10	υ	<	10	U	<	10	U	<	10	U			
Uranium	20 (b)				3.5	100	1										2.6	100	1			
Varadium	260 (c)				1.4	50	1			_							0.66	50	1			
PERCHLORATE (ug/L)	1		_					1	-						-		-	-				-
Perchlorate	18 (c)							<	4	UJ	111									1000		
OTHER PARAMETERS (#2/L)																	1					
Total Organic Carbon	NE	1400	1000		1.00															12000	1000	
Total Organic Halides	NE	<	50	U																<	50	U
SEMIVOLATILE ORGANIC					-								-									-
COMPOUNDS (eg/L)	Contract of the																					
2,4,5-Trichlorophenol	3600 (c)	1						<	5	U	<	5	U		5	R				1.000		
2.4.6-Trichlorophenol	6.1 (c)							<	5	U	<	5	ŭ		5	R						
2,4-Dichlorophenol	110 (c)							2	5	Ŭ	<	5	ŭ		5	R						
2,4-Dimethylphenol	730 (c)							2	5	U	2	5	U.		5	R						
													ŭ			R						
2,4-Dinitrophenol	73 (c)							<	10	U	<	10	~	5.1	10							
2,4-Dinitrotoluene	5 (d)							<	5	U	<	5	U	<	5	U						
2.6-Dinitrotoluene	5 (d)							<	5	U	<	5	U	<	5	U						
2-Chlorophenol	30 (c)							<	5	U	<	5	U		5	R						
2-Methylphenol	1800 (c)							<	5	U	<	5	U		5	R						
2-Nitrophenol	NA							<	5	U	<	5	υ		5	R						
4,6-Dinitro-2-methylphenol	NA							<	5	U	<	5	U	17	5	R						
4-Chloro-3-methylphenol	NA							<	5	υ	<	5	U		5	R						
4-Methylphenol	180 (c)							<	5	U	<	5	U		5	R						
4-Nitrophenol	290 (c)							<	5	U	<	5	U		5	R						
Benzoic acid	150000 (c)							<	10	U	<	10	U		10	R						
Bis(2-ethylhexyl) phthalate	6(a)							<	5	U	<	5	U	<	5	U						
Nitrobenzene	3.4 (c)							<	5	Ū.	<	5	U	<	5	U						
Pentachlorophenol	1 (a)							2	5	Ŭ	<	5	ŭ		5	R				10		
remarking opticion	4000 (b)							2	5	ŭ	è	5	ň		5	R						

FIELD ID DATE COLLECTED			G-07 01, 2002	2		G-6R 29, 20	02	1	A-MW1	1.11		MW1D 31, 20			A-MW2			A W-26			AW-27	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
VOLATILE ORGANIC																						
COMPOUNDS (#g/L)																						
1,1,1-Trichloroethane	200 (a)							<	3	υ	<	3	υ	<	3	U						
1,1-Dichloroethane	810 (c)							<	3	υ	<	3	U	<	3	υ				ļ		
1,1-Dichloroethene	7 (a)							<	3	U	<	3	υ	<	3	υ						
1,2-Dichloroethane	5 (a)							<	3	υ	<	3	υ	<	3	υ						
2-butanone	1900 (c)							<	10	υ	<	10	U	<	10	U						
Acetone	610 (c)							<	10	υ	<	10	υ	<	10	υ						
Benzene	5 (a)							<	3	υ	<	3	υ	<	3	υ						
Chloroethane	4.6 (c)							<	3	υ	<	3	υ	<	3	υ						
cis-1,2-Dichloroethene	70 (a)							<	3	U	<	3	U	<	3	U						
Freon113	59000 (c)							<	3	υ	<	3	υ	<	3	U				1		
Toluene	1000 (a)							<	3	U	<	3	υ	<	3	U						
Trichloroethylene	5 (a)							<	3	υ	<	3	υ	<	3	U						
Vinyl Chloride	2 (a)							<	3	U	<	3	U	<	3	υ						
Xylenes	10000 (b)							<	3	υ	<	3	υ	<	3	υ						

Key: RL= Reporting Limit Qual= Qualifier J = Estimated R = Rejected F = presence of interference

UJ = Estimated Nondetect U = Nondetect () = Above PRG µg/L= microgram per liter pCi/L = picoCuries per liter

(PRG): (a) Maximun (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 104 Risk Level NA= Not Available NE = Not Evaluated

P-Veres AAPIG'S Monitoring Report Analytical Results/PRG's DAredo

FIELD ID DATE COLLECTED			JAW-28 May 30, 2002	2		JAW-65 May 31, 200	2	N	T-1 1ay 30, 200	2	L	Т-4 Jun 04, 2002		ſ	T-5 un 03, 2002	2	M	T-6 1ay 30, 2003	2
۱ I	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)										-									
2,4,6-Trinitrotoluene	2 (b)	<	0.51	U	<	0.97	U				<	0.52	U	<	1.4	U			
2,4-Dinitrotoluene	5 (d)	<	0.51	Ŭ	<	0.97	Ū				<	0.52	Ŭ	<	1.4	Ŭ			
2,6-Dinitrotoluene	5 (d)	<	0.51	Ū	<	0.97	Ũ				<	0.52	Ũ	<	1.4	Ŭ			
2-Amino-4,6-dinitrotoluene	NA	<	0.51	Ū	<	0.97	U				<	0.52	Ū	<	1.4	Ū			
4-Amino-2,6-dinitrotoluene	NA	<	0.51	Ũ	<	0.97	Ũ				<	0.52	Ŭ	<	1.4	Ŭ			
Nitrobenzene	3.4 (c)	<	0.51	Ũ	<	0.97	Ũ				<	0.52	Ŭ	<	1.4	Ŭ			
RDX	2 (b)	<	0.51	Ū	<	0.97	Ū				<	0.52	Ŭ	<	1.4	Ŭ			
METALS (ag/L)																			
Arsenic	10 (a)	<	10	U	<	10	υ	<	10	U	4.9	10	I	<	10	U			
Barium	2000 (a)	306	200	-	107	200	ĭ	95.4	200	Ĵ	295	200	Ĵ	123	200	ĭ			
Chromium	100 (a)	<	10	U	3.2	10	Ĵ	<	10	Ū	1.4	10	í	<	10	Ŭ			
Copper	1400 (c)	<	25	Ŭ	<	25	ŪJ	<	25	ŭ		- •				2			
Lead	15 (a)	<	10	Ŭ	<	10	U	<	10	Ŭ	<	10	U	<	10	U			
Manganese	880 (c)	97.3	15	U	27.8	15		4.2	15	ĭ			Ũ			Ū	1		
Nickel	100 (b)	1.5	40	J	8.7	40	1	<	40	Ů									
Selenium	50 (a)	<	10	Ŭ	<	10	Ū	2	10	ŭ	<	10	U	<	10	U			
Silver	100 (b)	<	10	Ŭ	l e	10	Ŭ	l 2	10	ŭ	- C	10	Ŭ	l č	10	U			
Uranium	20 (b)	4.3	100	ĭ	2	100	J	1.9	100	J	-	10	0		10	U			
Vanadium	260 (c)	0.91	50	i	ĩ	50	í	0.83	50	i									
PERCHLORATE (ug/L)		0.000	2.5						17.7										
Perchlorate	18 (c)	<	4	UJ	<	4	UJ												
OTHER PARAMETERS (#g/L)											1								
Total Organic Carbon	NE							<	1000	U							1600	1000	
Total Organic Halides	NE				1			<	50	Ŭ							<	50	U
SEMIVOLATILE ORGANIC																			
COMPOUNDS (ag/L)																			
2,4,5-Trichlorophenol	3600 (c)	<	5	U							<	5	UJ	<	5	U			
2,4,6-Trichlorophenol	6.1 (c)	<	5	Ŭ	1						<	5	UJ	<	5	Ū	1		
2,4-Dichlorophenol	110 (c)	<	5	U							<	5	UJ	<	5	U			
2,4-Dimethylphenol	730 (c)	<	5	Ŭ	1						<	5	UJ	<	5	Ū			
2,4-Dinitrophenol	73 (c)	<	11	Ŭ	1						<	9	UJ	<	10	Ū			
2,4-Dinitrotoluene	5 (d)	<	5	Ŭ	1						<	5	UJ	<	5	U			
2.6-Dinitrotoluene	5 (d)	<	5	Ŭ	1						<	5	UJ	<	5	U			
2-Chlorophenol	30 (c)	<	5	Ū	1						<	5	UJ	<	5	U	1		
2-Methylphenol	1800 (c)	< l	5	Ŭ							<	5	UJ	<	5	U			
2-Nitrophenol	NA	<	5	Ŭ							<	5	UJ	<	5	Ū			
4,6-Dinitro-2-methylphenol	NA	<	5	Ŭ							<	5	UJ	<	5	U			
4-Chloro-3-methylphenol	NA	<	5	Ŭ							<	5	UJ	<	5	U			
4-Methylphenol	180 (c)		5	Ŭ							<	5	UJ	<	5	U			
4-Nitrophenol	290 (c)	< l	5	Ŭ							<	5	ŬĴ	<	5	Ū			
Benzoic acid	150000 (c)		n	Ŭ							<	9	UJ	<	10	Ū			
Bis(2-ethylhexyl) phthalate	6 (a)		ŝ	Ŭ							<	5	UJ	<	5	U			
Nitrobenzene	3.4 (c)	- ×	5	U							<	5	UJ	<	5	U	1		
		- ×	5	U	1						~	5	ŰĴ		5	Ŭ			
Pentachlorophenol	l (a)																		

-

FIELD ID DATE COLLECTED			JAW-28 May 30, 200	12	,	JAW-65 May 31, 200	2	N	T-1 1ay 30, 200	2	L	T-4 Jun 04, 2003	2	,	T-5 Jun 03, 2003	2	N	T-6 1ay 30, 2002	:
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
VOLATILE ORGANIC																			
COMPOUNDS (#g/L)								1											
1,1,1-Trichloroethane	200 (a)	<	3	U	1			1			<	3	υ	<	3	U	l		
1,1-Dichloroethane	810 (c)	<	3	U	1			1			<	3	U	<	3	U			
1,1-Dichloroethene	7 (a)	<	3	U				1			<	3	U	<	3	U	1		
1,2-Dichloroethane	5 (a)	<	3	U				1			<	3	U	<	3	U			
2-butanone	1900 (c)	<	10	U	1			1			<	10	υ	<	10	U	1		
4-isopropyltoluene	NA	<	3	U															
Acetone	610 (c)	<	10	U				1			<	10	U	<	10	υ	1		
Benzene	5 (a)	<	3	U				1			<	3	U	<	3	U	1		
Chloroethane	4.6 (c)	<	3	U	1			1			<	3	U	<	3	U			
cis-1,2-Dichloroethene	70 (a)	<	3	U				1			<	3	U	<	3	U	1		
Freon113	59000 (c)	<	3	U							<	3	U	<	3	U	1		
Toluene	1000 (a)	<	3	U	1			1			<	3	U	<	3	U	1		
Trichloroethylene	5 (a)	<	3	U							<	3	U	<	3	U	1		
Vinyl Chloride	2 (a)	<	3	U							<	3	U	<	3	U	1		
Xylenes	10000 (b)	<	3	υ							<	3	U	<	3	U			

Key:

RL= Reporting Limit Qual= Qualifier J=Estimated R=Rejected F=presence of interference UJ = Estimated Nondetect U = Nondetect () = Above PRG µg/L= microgram per liter pCi/L= picoCuries per liter (PRG): Preliminary Remediation Goal; (a) Maximun Contaminart Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁴ Risk Level NA = Not Available NE = Not Evaluated

P. Jawa AAPGW Meeting Report Analytical Results PRO's UD Area

FIELD ID DATE COLLECTED		Ма	T-9 y 30, 200	2
	PRG	Result	RL.	Qual
OTHER PARAMETERS (mg/L)				
Total Organic Halides	NA	<	50	U
Total Organic Carbon	NA	7200	1000	
Key:				
RL= Reporting Limit	UJ=	Estimated N	Iondetect	
Qual = Qualifier	U=	Nondetect		
J=Estimated	0	= Above P	RG	

R = Rejected

F=presence of interference

 $U = \text{Nondetect} \qquad (1 \text{ KO})$ $U = \text{Nondetect} \qquad (a) \text{ M};$ $(i) = \text{Above PRG} \qquad (b) \text{ H};$ $\mu g/L = \text{microgram per liter} \qquad (c) \text{ Re}$ (d) 10

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁴ Risk Level NA = Not Available NE = Not Evaluated

40

.

TABLE 4.12 SUMMARY OF CHEMICALS DETECTED AT DEMOLITION AREA AND DEACTIVATION FURNACE SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	ú i lite	$\mu = 0$	DA-01		1	DA-02 Jun 12, 2002	1.5	h	G-09 hun 13, 2002		1000	G-10 Jun 13, 2002			G-11 un 13, 2002	2		JAW-01 un 12, 2003	6	1.5	JAW-02 un 13, 200	2
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL.	Qual
EXPLOSIVES (pg/L)			- 77.0-17												- 1/ 1				-		1.10	
HMX	400 (b)	<	0.7	U	1.6	0.53	5	<	0.99	U	<	5.3	U	<	1.2	U	<	1	U	<	0.32	U
MNX	NA	<	0.87	U	0.56	0.66	1	<	1.2	U.	<	1.6	U	<	1.5	U.	<	1.3	u	0.31	0.41	1
RDX	2 (b)	(5.2)	0.7		(10)	0.53		1.4	0.99	1	(5.1)	1.3		(2.6)	1.2	1	(6.2)	- U		(2.5)	0.32	
METALS (#g/L)									1.1	-		10.1		P			1					
Barium	2000 (#)	82.2	200		68	200	1	158	200	1	72.4	200	1	877	200	3	96.2	200	3	139	200	1
Selenium	50 (a)	1,6	10	- J	<	10	U	3.6	10	1	<	10	U	<	10	U	1.7	10	1	<	10	UI
NA PARAMETER (PZ/L)		1000												1				-	-			
Alkalinity	NE	440000	8000		810000	8000		340000	8000		370000	8000		230000	8000		500000	\$000		580000	3000	
Ammonia	NE	60	10		50	10		<	10	U	< s	10	U	70	10		<	10	U	<	10	U
Carbon Dioxide	NE	193600	C		355400	C		149600	C		162800	c		101200	C		220000	C		255200	C	
Chloride	NE	15000	10000		7000	1000		4000	1000		8000	1000		1000	1000		11000	10000		3000	1000	
Nitrate + Nitrite as N	NE	290	10		1000	10		1800	10		1800	10		<	10	IJ	840	10		580	10	
Sulfate	NE	51000	10000		20000	10000		57000	10000		30000	10000		35000	10000		55000	10000		86000	10000	
Sulfide	NE	15000	1000		5000	1000		<	1000	U	<	1000	U	1 5	1000	u	10000	1000		<	1000	U
Total Kieldahl Nitrogen	NE	<	300	U	800	300		<	300	U	<	300	Ū.	400	300		<	300	U	400	300	
Total Organic Carbon	NE	1400	1000	- D	4400	1000		1200	1000	· · · ·	3100	1000		2400	1000		1600	1000		2000	1000	

Key: RL = Reporting Limit

R=Rejected

Qual = Qualifier I = Estimated

F-presence of interference

U = No () = µg/L=

UJ = Essimated Nondetect U = Nondetect () = Above PRG µg/L = microgram per liter (PRG): Preliminary Remediation Goal; (a) Maximun Contaminary Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10³ Risk Level NA = Not Avaitable NE = Not Evaluated C = Calculated value equivalent to alkalinity RL X 0.44

SUMMARY OF CHEMICALS DETECTED AT FIRING SITE SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED			W-34 28, 2003	2		N-618 7, 2002	2		V-618Da 27, 200			AW-32 ne, 2002			AW-33 ne, 2002	2
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL.	Qual	Result	RL	Qual
METALS (#g/L) Barium Uranium	2000 (a) 20 (b)	< (21.5)	200 2.0	U	240 1.7	200 2.0	9	235 2	200 2.0			DRY			DRY	
RADIONUCLIDES (pCi/L) Actinium-228	NA	<	40	U	8.03±4.19	40	4	<	40	U						
Gross alpha	15 (a)	9.7 ± 2,9	3.8		3.4 ± 1.9	2.9	- C II	<	3.3	U						
Gross Beta	50 (a)	6.1 ±2.6	4.1		<	3.7	U	<	3.3	U						
Lead-214	NA	12.7±6.7	50	1	<	50	U	<	50	U						
Uranium-235	NA	0.63±0.28	1.0		<	1.0	U	<	1.0	U						

Key: RL= Reporting Limit Qual= Qualifier J = Estimated R ≈ Rejected E = Value exceeds linear range F ≈ presence of imerference

UJ = Estimated Nondetect U = Nondetect () = Above PRG

µg/L= microgram per liter pCi/L= picoCuries per liter (PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10-4 Risk Level NA= Not Available NE= Not Evaluated

5

SUMMARY OF CHEMICALS DETECTED AT THE AMMUNITION BOX CHIPPER DISPOSAL PIT SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED			JAW-620 un 13, 200	2
	PRG	Result	RL	Qual
METALS (#g/L)				
Barium	2000 (a)	74.2	200	1
Selenium	50 (a)	4.9	10	J

 Key:
 UJ = Estimated Nondetect

 Qual = Qualifier
 U = Nondetect

 J=Estimated
 $\mu g/L =$ microgram per liter

 R = Rejected
 () = Above PRG

 F = presence of interference
 F

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁴ Risk Level NA = Not Available NE = Not Evaluated

Ł

 \sim

SUMMARY OF CHEMICALS DETECTED AT WEST BURN PADS, WEST BURN PADS LANDFILL, BURN CAGES, AND BURN CAGES LANDFILL SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED		Ju	G-30 n 15, 2002	2		AW-24 24, 2002			AW-25 n 13, 2002	2.5		JAW-68 n 14, 2002			BP-99-01 n 11, 2002			BP-99-02	d 11		P-99-02Da n 12, 2002	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (µg/L) 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	2 (b) 5 (d)	~ ~	0.39	U U	<	0.58	UUU	<	0.38	U	~ ~	0.47	UU	<	0.66	UUU	<	0.57	UUU	×.	0.48	U U
2-Amino-4,6-dipitrotoluene	NA				<			<						<			<	0.57		<		
4-Amino-2.6-dinitrotoluene		<	0 39	U	<	0.58	U	<	0.38	U	<	0.47	U	<	0.66	u	<	0.57	U	<	0.48	U
4-Nitrotaluene	NA	<	0.39	U	<	0.58	U	<	0.38	U	<	0.47	U	<	0.66	U	<	0.57	0	0.36	0.48	1
	61 (c)	<	0.39	U	<	0.58	U	<	0.38	U	<	0.47	U	<	0.66	U	<	0,57	U	<	0.48	U
HMX	400 (b)	1.4	0.39	1	54	0.58	100	140	5.7	1	32	0.47	1	<	0.66	U	41	0.57	1	3.8	0,48	1
MNX	NA	<	0.49	U	0.56	0.58	1	3.4	0.47		<	0.58	U	<	0.83	U	5.5	0.71		0,97	0.6	1.12
RDX	2 (b)	(3.4)	0.39	_	(5)	0.58		(98)	5.7		0.48	0.47	1	(5.8)	0.66	1	(74)	5.7	J	(30)	0.48	1
METALS (#g/L)	1.1.1.1.1	1000			1. Second		_	1.20.20	1.00		11.				2		11			1		
Arsenic	10 (a)	<	10	U	(28.8)	10		<	10	U	<	10	U	<	10	U	<	10	U	<	10	υ
Barium	2000 (a)	44.5	200	1	714	200	1	30.9	200	1	55.7	200	J	44.2	200	0	46	200	1	48.7	200	J
Chromium	100 (a)	<	10	U	<	10	U	<	10	U	<	10	U	2.4	10	1	<	10	U	2.2	10	J
Lead	15 (a)	<	10	UI	<	10	U	<	10	U	<	10	UJ	<	10	U	<	10	UI	<	10	UJ
Selenium	.50 (a)	<	10	UJ	<	10	U	2.4	10	3	<	10	UJ	<	10	υ	<	10	UJ	<	10	UJ
Silver	100 (b)	<	10	U	<	10	U	<	10	U	<	10	U	<	10	UI	<	10	Ü	<	10	U
NA PARAMETERS (#g/L)				-		-							_	1							_	
Alkalinity	NE	340000	8000		400000	8000		110000	8000		180000	8000		240000	8000		280000	8000	0.51	290000	8000	
Ammonia	NE	20	10		690	10		<	10	U	<	10	U	30	10		<	10	Ū.	20	10	
Carbon Dioxide	NE	149600	c		176000	C		48400	C		79200	C		105600	C		123200	c	~	127600	C	
Chloride	NE	4000	1000		12000	10000		50000	10000		110000	20000		61000	20000		47000	10000		48000	10000	
Nitrate + Nitrite as N	NE	440	10		<	10	U	5300	100		<	10	U	1200	10		13000	100		13000	100	
Sulfate	NE	34000	10000		81000	10000	D.	250000	20000		63000	10000		330000	20000		170000	10000		180000	10000	
Sulfide	NE	54000	1000	U	3000	1000		and the second	1000	100		1000	U	7000	1000		2000	1000	J	16000	1000	
Total Kieldahl Nitrogen	NE	1.1.2.2	300	Ŭ				<	300	UU	<	300	Ŭ	1000	300	U		300	Ú.	and the second	300	ú
Total Organic Carbon	NE	1000	1000	0	1000	300		2300	1000	0	< 1400	1000	0	1000	1000	0	1200	1000	U	1100	1000	U
VOLATILE ORGANIC	INC.	1000	1000	_	3300	1000		2300	1000	-	1400	1000	_	1000	1000	_	1200	1000		1100	1000	
COMPOUNDS (#g/L)	Sec. 15		1.12.1		1.00			1.5									- 44 -					
1.1.1-Trichloroethane	200 (2)	<	3	U	<	150	U	<	3	υ	<	3	U	<	3	U	56	3	3	40	3	1
1.1-Dichloroethene	7 (a)	<	3	U	<	150	U	<	3	U	<	3	U	<	3	U	(41)	3	64	(40)	3	52
Acetone	610 (c)	<	10	U	<	500	υ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
Chloroform	80 (a)	<	3	U	<	150	U	- 4	3		<	3	U	<	3	U	3	3	1	2	3	1
cis-1,2-Dichloroethene	70 (a)	<	3	U	<	150	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
Dichlorodifluoromethane (Freen12)	1000 (a)	<	3	U	220	150		<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
Trichlorotrifluoroethane (Freon113)	59000 (c)	<	3	U	16000	600		<	3	U	<	3	U	<	3	U	19000	600		20000	600	
o-Xylene	NA	<	3	U	<	150	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
Toluene	1000 (a)	<	3	U	<	150	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
Trichloroethylene	5 (a)	<	3	U.	<	150	Ŭ		3	U	<	1	U	<	3	U	<	3	U	<	3	U

RL= Reporting Limit

Qual = Qualifier J=Estimated

R=Rejected

E=Value exceeds linear range

F=presence of interference

U=Nonderect () = Above PRG µg/L= microgram per liter

X 0.44

UJ = Estimated Nondetect

(PRG): Preliminary Remediation Goal; (a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region 1X PRGs C=Calculated value equivalent to alkalinity RL (d) 104 Risk Level NA= Not Available NE= Not Evaluated

Prines AADOW Almeneting Report Analytical Result/PRO 19870

SUMMARY OF CHEMICALS DETECTED AT WEST BURN PADS, WEST BURN PADS LANDFILL, BURN CAGES, AND BURN CAGES LANDFILL SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED			BP-99-03	20.1		VBP-99-4 n 13, 2002			BP-99-5			BP-99-6 30, 2002		WBP-99-7 Jun 11, 2002			
COLLECTED	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	
EXPLOSIVES (#g/L)	1.80	(trate)		1.00					1100	- Carel			4	1010-50		-	
2.4.6-Trinitrotoluene	2 (b)	1.7	0.36		<	1.2	U	<	0.91	U	<	0.23	U	<	0.79	U	
2.4-Dinitrotoluene	5 (d)	<	0.36	υ	K	1.2	Ŭ	< C	0.91	ŭ	1.6	0.23	j.	è	0.79	Ŭ	
2-Amino-4.6-dinitrotoluene	NA	3.8	0.36	I	2	1.2	ŭ		0.91	ŭ		0.23	j.		0.79	Ŭ	
4-Amino-2,6-dinitrotoluene	NA	4.2	0.36	ż	<	1.2	υ	<			1.4		ú.	<			
4-Nitrotoluene				u u				<	0.91	υ		0.23		<	0.79	U	
	61 (c)	<	0.36		<	1.2	U	5	0,91	U	0.67	0.23	1	<	0.79	U	
HMX	400 (b)	180	36	1	3.4	1.2	1	6	0.91	1	<	0.23	U	<	0.79	U	
MNX	NA	44	45	. 1	<	1.5	U	1.1	1.1	1.1.1.1.1.1	<	0.23	U	<	0.99	U	
RDX	2 (b)	(1400)	36	-	(3.4)	1.2	1	(32)	0.91		0.2	0.23	1	<	0.79	U	
METALS (rg/L)	1000	1000		- CV -	I have been			-				S. 6.7		T T A ST	1.1		
Arsenic	10 (a)	<	10	U	<	10	U	(20.9)	10		<	10	U	<	10	U	
Barium	2000 (a)	216	200	3	48.8	200	1	(2020)	200		65.5	200	1	126	200	1	
Chromium	100 (a)	0.84	10	J	<	10	U	<	10	U	<	10	U	<	10	U	
Lead	15 (a)	2.8	10	1	<	10	UJ	2.5	10	1	<	10	U	<	10	U	
Selenium	50 (a)	<	10	U	2.9	10	J	<	10	UJ	<	10	UJ	<	10	U	
Silver	100 (b)	<	10	UJ	<	10	U	<	10	U	<	10	U	0.85	10	1	
NA PARAMETERS (#g/L)			1.00		12.00					-			-	1		_	
Alkalinity	NE	360000	8000		350000	8000		590000	8000		310000	8000		370000	8000		
Ammonia	NE	30	10		10	10		1700	10	1.00	400	10		70	10		
Carbon Dioxide	NE	158400	C		154000	C		259600	C		136400	C		162800	C		
Chloride	NE	33000	10000		53000	10000		62000	10000	1	22000	10000		3000	1000		
Nitrate + Nitrite as N	NE	860	10		7700	50		<	10	U	<	10	U	<	10	U	
Sulfate	NE	46000	10000		240000	20000		36000	10000		59000	10000		17000	1000		
Sulfide	NE	2000	1000		<	1000	U	6000	1000	- 1 M	<	1000	U	21000	1000		
Total Kjeldahl Nitrogen	NE	<	300	U	~	300	Ŭ	3400	300		700	300		<	300	U	
Total Organic Carbon	NE	2200	1000	ų	1300	1000	v	5000	1000	-	1800	1000		è.	1000	Ŭ	
VOLATILE ORGANIC COMPOUNDS						1000			1000			12.0				-	
(#R/L)					1												
1.1.1-Trichloroethane	200 (a)	<	3	U	3	3	j.	<	3	U I	<	30000	U	<	3	U	
1,1-Dichloroethene	7 (a)	<	3	Ŭ	<	3	U	<	3	Ũ	<	30000	U	<	3	U	
Acetone	610 (c)	20	10	0	<	10	ŭ	i i	10	ŭ	<	100000	ũ	×	10	Ŭ	
Chloroform	80 (a)	<	3	U	è i	3	ŭ	i i	3	ŭ	è.	30000	ŭ	i i	3	U	
		3	3	J		3	U	3	3	U	~	30000	ŭ	i i	3	ŭ	
cis-1,2-Dichloroethene	70 (a) 1000 (a)	<	3	Û	<	3	Ŭ	2 A	3	U	e .	30000	Ŭ	à	3	ŭ	
Dichlorodifluoromethane (Freon12)		860	60	Ų	< 9100	300	U	(73000)	1500	U	(210000)	30000	U	à	3	ŭ	
Trichlorotrifluoroethane (Freon113)	59000 (c)						10		10000	1.00	An or other states of the stat	30000	U		3	ŭ	
o-Xylene	NA	<	3	U	<	3	U	3	3		<			<			
Toluene	1000 (a)	<	3	U	<	3	U	1	3	1	<	30000	U	<	3	U	
Trichloroethylene	5 (a)	1	3	4	<	3	U	(12)	3	-	<	30000	U	<	3	U	
Key:		10-100				Conversion of		4 - Jai 6	-								
RL= Reporting Limit		Estimated N	ondetect					Remediation									
Qual = Qualifier		Vondetect						minant Level									
I = Estimated	0	= Above PF	G					Level (HAL	.)								
R = Rejected	µg/L	= microgram	m per liter	ST		(c) Region	IX PRG	C									
F=presence of interference	C-1	alculated va	lue emine	leat to al	kalinity R1	(d) 10 ⁻⁴ Ri	ck Level										

F=presence of interference

C=Calculated value equivalent to alkalinity RL (d) 10" Risk Level NA = Not Available X 0.44 NE= Not Evaluated

Pileres AAPGW Meaning Report Analytical Booth PRC (WWW

SUMMARY OF CHEMICALS DETECTED AT NORTH BURN PADS, NORTH BURN PADS LANDFILL, AND CONTAMINATED WASTE PROCESSOR

SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	0.246		CW-P	z		AW-11 13, 2000			AW-12 14, 200	2		AW-13 14, 200	2		AW-14			AW-626	
A WORKSTON AND	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (#g/L)									-										
1,3,5-Trinitrobenzene	1100 (c)	1.4	0.44	J	<	0.56	U	<	0.74	U	<	0.83	U	<	0.39	U	<	0.6	U
2-Amino-4,6-dinitrotoluene	NA	1.3	0.44	1	<	0.56	U	<	0.74	U	<	0.83	U	<	0.39	U	<	0.6	u
4-Amino-2,6-dinitrotoluene	NA	1	0.44	1	<	0.56	U	<	0.74	U	<	0.83	U	<	0.39	U	1.1	0.6	1
нмх	400 (b)	<	0.44	U	<	0.56	U	<	0.74	U	<	0.83	Ü	<	0.39	U	6.6	0.6	j.
RDX	2 (b)	<	0.44	U	<	0.56	U	<	0.74	Ŭ	<	0.83	U	1.3	0.39	12.1	(3.6)	0.6	1.1
METALS (kg/L)				-			_			-		_	_						_
Barium	2000 (a)	417	200	J.	70.3	200	3	23.4	200	3	86.2	200	3	184	200	1	177	200	1
Chromium	100 (a)	<	10	U	<	10	U	<	10	Ù	1.7	10	Ĵ.	0.62	10	Ť.	<	10	U
Lead	15 (a)	<	10	U	<	10	ÛJ	<	10	Ū	<	10	ŪJ	1.7	10	1	<	10	UJ
Selenium	50 (a)	<	10	ŭ	<	10	Ű	<	10	ŬJ	1.6	10	ï	1.8	10	j.	<	10	U
NA PARAMETERS (12/L)			_						-				_	1.00					
Alkalinity	NE	530000	8000		220000	6000		76000	8000		180000	8000		330000	8000		350000	8000	
Ammonia	NE	<	10	U	<	10	U	<	10	U	<	10	U	<	10	Ü	<	10	U
Carbon Dioxide	NE	233200	C	20	96800	C	2	33440	C	1	79200	C	- 22	145200	C	1.12.1	154200	C	1.0
Chloride	NE	160000	20000		36000	10000		<	1000	U	24000	10000		13000	10000		18000	10000	
Nitrate + Nitrite as N	NE	<	10	U	460	10		<	10	Ũ	610	10		<	10	U	10	10	
Ortho-Phosphate	NE	<	1000	U	<	1000	U	3000	1000	12	<	1000	U	<	1000	Ŭ.	<	1000	11
Sulfate	NE	9000	1000		31000	10000	~	13000	1000		40000	10000	- 91	28000	10000		18000	1000	12
Sulfide	NA	2000	1000		<	1000	U	<	1000	U	<	1000	U	<	1000	U	<	1000	Û
Total Kjeldahl Nitrogen	NE	<	300	U	× I	300	ũ	2	300	ŭ	i i	300	Ŭ	3100	300	÷.	300	300	-
Total Organic Carbon	NA	3400	1000	-	é	1000	Ű.	2	1000	ĨI.	2	1000	ŭ	1700	1000		2800	1000	

Key:

RL= Reporting Limit Qual= Qualifier J=Estimated R=Rejected F=presence of interference #g/L= microgram per liter UI = Estimated Nonderect U=Nondetect

RL X 0.44

() =Above PRG

(PRG): Preliminary Remediation Goal;

(a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL)

C=Calculated value equivalent to alkalinity (c) Region IX PRGs (d) 104 Risk Level NA= Not Available NE= Not Evaluated

P View AAPGW Meeting Report any not Party WEG WHEP.

SUMMARY OF CHEMICALS DETECTED AT NORTH BURN PADS, NORTH BURN PADS LANDFILL, AND CONTAMINATED WASTE PROCESSOR

SPRING 2002 GROUNDWATER MONITORING EVENT - IOWA ARMY AMMUNITION PLANT

FIELD ID DATE COLLECTED	1.11		W-627	z		¥-627Du 14, 200		NBPLF-MW1 Jun 13, 2002				
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual		
EXPLOSIVES (#g/L)												
1,3,5-Trinitrobenzene	1100 (c)	<	0.39	U	<	1.2	U	<	0.43	U		
2-Amino 4.6-dinitrotoluene	NA	<	0.39	U	× ×	1.2	U	<	0.43	U		
4-Amino-2,6-dinitrotoluene	NA	<	0.39	U	<	1.2	U	<	0.43	U		
нмх	400.(b)	<	0.39	U	<	1.2	U	<	0.43	U		
RDX	2 (b)	(3.5)	0.39	10.00	(4.3)	1.2	1.00	<	0.43	U		
METALS (#g/L)	1111	1.0			1			1.000				
Barium	2000 (a)	189	200	1	168	200	3	160	200	J		
Chromium	100 (a)	5.6	10	1	5	10	J	0.77	10			
Lead	15 (2)	<	10	UJ	<	10	UI	~	10	U		
Setenium	50 (a)	<	10	U	<	10	U	<	10	U		
NA PARAMETERS (#g/L)					1.							
Alkalinity	NE	270000	8000		270000	8000		410000	8000			
Ammonia	NE	<	10	U	<	10	U	120	10			
Carbon Dioxide	NE	118800	C		118800	C		180400	C			
Chloride	NE	56000	10000		\$5000	10000		<	1000	U		
Nitrate + Nitrite as N	NE	1000	10		1000	10		<	10	U		
Ortho-Phosphate	NE	<	1000	U	<	1000	U	<	1000	U		
Sulfate	NE	34000	10000	2.11	36000	10000		19000	1000			
Sulfide	NE	<	1000	U	<	1000	U	<	1000	U		
Total Kjeldahl Nitrogen	NE	<	300	U	<	300	U	<	300	U		
Total Organic Carbon	NE	<	1000	U	<	1000	U	1800	1000			

Key: RL= Reporting Limit Qual= Qualifier J=Estimated R=Rejected E=Value exceeds linear range F=presence of interference µg/L= microgram per liter

UJ = Estimated Nondetect

U = Nondetect C=Calculated value equivalent to alkalinity RL X 0.44 () =Above PRG

(PRG): Preliminary Remediation Goal; (a) Maximum Contaminant Level (MCL) (b) Health Advisory Level (HAL) (c) Region IX PRGs (d) 10⁻¹ Risk Level NA = Not Available NE = Not Evaluated

FIELD ID DATE COLLECTED			TA-99-1	2		TA-99-2 18, 200	2		AW-58 24, 200	2	JAW-59 Jun 18, 2002		2	JAW-60 Jun 18, 2002		2	JAW-61 Jun 18, 2002			JAW-62 Jun 18, 2002		12
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
EXPLOSIVES (ug/L)	1 2 2 2 1	-		-			_	-								-						
1,3,5-Trinitrobenzene	1100 (c)	<	1.3	U	<	0.44	U	<	0.46	U	<	0.51	U	<	1.1	U	<	0.31	U	<	1	U
2.4-Dinitrototuene	5 (d)	<	1.3	U	<	0.44	U	<	0.46	U	<	0.51	U	<	1.1	U	<	0.31	U	<	1	U
2-Amino-4.6-dinitrotoluene	NA	<	1.3	U	<	0.44	U	<	0.46	u	<	0.51	U	<	1.1	U.	<	0.31	U	<	1	U
4-Amino-2,6-dinitrotoluene	NA	<	1.3	U	<	0.44	U	<	0.46	U	<	0.51	U	<	1.1	U	<	0.31	U	<	1	U
HMX	400 (b)	3.7	1.3	Ĵ.	<	0.44	U	<	0.46	U	<	0.51	U	<	1.1	U	<	0.31	U	<	- T.	U
RDX	2 (b)	(9)	1.3		<	0.44	u	0.55	0.46	1	1.7	0.51	-	<	1.1	U	<	0.31	Ū.	<	î	U
METALS (#g/L)				-		_		-	-			_								-		_
Arsenic	10 (a)	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
Barium	2000 (a)	134	200	1	47.5	200	1	93.3	200	1	141	200	1	191	200	3	73.6	200	1	72.6	200	3
Cadmium	5 (a)	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U	<	5	U
Chromium	100 (a)	<	10	U	1.3	10	1	1.2	10	1	<	10	υ	<	10	U	<	10	U	<	10	U
Lead	15 (a)	<	10	U	<	10	U	<	10	U	<	10	UJ	<	10	U	<	10	U	<	10	U
Mercury	2 (b)	<	0.2	U	<	0.2	U	<	0.2	U	0.024	0.2	J	<	0.2	U	<	0.2	U	<	0.2	U
Selenium	50 (2)	<	10	UJ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	UJ	<	10	UJ
NA PARAMETERS (ug/L)																1						
Alkalinity	NE	300000	8000		420000	8000		280000	8000		320000	8000		380000	8000		170000	8000		130000	8000	
Ammonia	NE	30	10		220	10		<	10	U	<	10	U	<	10	U	<	10	U	<	10	U
Carbon Dioxide	NE	132000	C		184800	C		123200	С		140800	C		167200	С		74800	с		57200	C	
Chloride	NE	8000	1000		2000	1000		3000	1000		12000	10000		21000	10000		4000	1000		12000	10000	
Nitrate + Nitrite as N	NE	1400	10		70	10		90	10		140	10		140	10		50	10		90	10	
Ortho-Phosphare	NE	<	1000	U	<	1000	U	<	1000	U	<	1000	U	<	1000	υ	<	1000	U	33000	10000	
Sulfate	NE	44000	10000		58000	10000		44000	10000	1	59000	10000		34000	10000		41000	10000		34000	10000	
Sulfide	NE	<	1000	U	8000	1000		9000	1000		8000	1000		9000	1000		<	1000	U	<	1000	U.
Total Kjeldahl Nitrogen	NE	<	300	U	<	300	U	<	300	U	<	300	U	300	300		<	300	U	<	300	U
Total Organic Carbon	NE	1000	1000	1.0	<	1000	U	1600	1000		1600	1000		1600	1000		<	1000	U	<	1000	U

TELD ID DATE COLLECTED	1.0		TA-99-1			TA-99-2			AW-58 24, 200	12		AW-59 18, 200	a		AW-60	2		AW-61 18, 200	2		AW-62	
	PRG	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual	Result	RL	Qual
VOLATILE ORGANIC			-	-			-										-	-	-	1.		
COMPOUNDS (#g/L)		1000						1000						1.1			1.2		1.11			
1.1.1-Trichloroethane	200 (a)	110	3		<	3	U	180	3		140	3	1.21	94	3		140	3	100	<	3	U
1.1.2-Trichloroethane	5 (a)	<	3	U	<	3	Ŭ	1	3	1	1	3	I	4	3		<	3	U	<	3	U
.1-Dichloroethane	810 (c)	11	3		<	3	U	4	3		3	3		110	3		20	3		<	3	U
I.I.Dichloroethene	7 (a)	(120)	3		<	3	Ŭ	(170)	3		(190)	1		(440)	15		(120)	3		<	3	U
1.2-Dichloroethane	5 (a)	4	3		<	3	Ŭ	<	3	0	1	3	1	(29)	3		2	3	1	<	3	ũ
2-butanone	1900 (c)		10	U	1	10	ŭ	<	10	- ū	e	10	ú	<	10	U	<	10	U	~	10	Ű
2-Hexanone	11000 101	<	10	ŭ	<	10	ŭ	<	10	ŭ	é	10	ŭ	< C	10	ŭ	~	10	U.	e e	10	Ŭ
Aceione	610 (c)	<	10	ũ	<	10	Ŭ	<	10	ũ		10	ŭ	1	1	ŭ	<	10	ũ	<	10	Ŭ
Benzene	5 (a)	è	3	ũ	2	1	ũ	è	3	ŭ	è	1	ŭ	(13)	1	~	-	1	Ŭ	2	3	Ŭ
Chloroethane	4.6 (c)	~	3	U.	~	3	ŭ	e	3	ũ.	<	3	U	<	3	U	<	3	Ū.	2	3	U
Chloroform	80 (a)	2	3	1	2	3	ŭ	~	3	ũ	<	3	ŭ	4	3		2	3	I.	<	3	ũ
cis-1,2-Dichloroethene	70 (a)	10	1	2	è	3	ũ	<	3	ũ	2	3	- i	(100)	1		6	1		~	3	Ū
Ethylbenzene	700 (a)	<	3	U	e	3	Ũ	<	3	Ū.	<	3	U	<	3	U	i e	3	Ú	<	3	U
Freon113	59000 (c)	<	4	Ũ	e i	3	ũ	2	3	Ū.	<	3	U	<	3	Ū.	<	3	U	<	3	U
Methyl isoburyl ketone	160 (c)	<	10	Ŭ	<	10	u	<	10	U	<	10	U	<	10	Ū	<	10	Ü	<	10	U
Methylene chloride	5 (1)	<	3	ũ	i e	3	ũ	<	3	ŭ	<	3	U	~	3	ū	<	3	U	<	3	U
o-Xylene	4.404	<	3	ü	<	3	U	<	3	ŭ	<	3	ŭ	<	3	U.	<	3	U	<	3	U
Tetrachloroethene	5 (2)	1	3	1	<	3	U	3	3		(8)	3	1	<	3	U	(50)	3		<	3	U
Toluene	1000 (a)	<	3	Û.	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U	<	3	U
trans-1,2-Dichloroethene	100 (a)	<	3	U	e l	3	Ŭ	<	3	ŭ	<	3	U	<	3	Ũ	<	3	U	<	3	U
Trichloroethylene	5 (a)	(8)	3		<	3	ŭ	<	3	U	1	3	ĩ	(76)	3	2	(63)	3		<	3	Ű
Vinyl Chloride	2 (a)	<	3	U	e i	3	Ŭ	<	3	U	<	3	U	(3)	3		<	3	U	<	3	Ü
Xylenes	10000 (b)	<	Ĩ	ŭ	<	i	U	<	3	ŭ	<	3	ŭ	<	3	U	<	3	Ũ	<	3	Ŭ

Qual = Qualifier

J = Estimated R=Rejected

F=presence of interference

U=Nondetect () = Above PRG

X 0.44

(a) Maximun Contaminant Level (MCL) (b) Health Advisory Level (HAL) $\mu g/L = microgram per liter$ (c) Region IX PRGs C=Calculated value equivalent to alkalinity RL (d) 10⁴ Risk Level NA = Not Available NE= Not Evaluated

Pitters AAPOW Meaning Report Authorite Results (PECTIVETA